

Smart Modem Program for the - Apple - Atari - C.64 - CoCo MODCOMM: A Simple Modem Driver for CoCo DOSPLUS: New Commands for Commodore 64 SPEEDUP: Reduce Apple Disk Loading Time Atari Player: Electronic Organ Program

Richuale Telecommunications

10610 BAYVIEW (Bayview Plaza)
RICHMOND HILL, ONTARIO, CANADA L4C 3N8

\star The ability to transfer data from any type of device to another (IEEE, Serial, Parallel)
\star BASIC 4.0 which allows you to run more PET BASIC programs and gives you extended disk and $1 / 0$ commands.
\star The ability to have several 64 s on line together - sharing common IEEE devices such as disks or printers with Spoolling Capability.
\star Built-in machine language monitor

* A built-in terminal or modem program which allows the system to communicate through a modem to many bulletin board systems and other computer mainframes.
\star Compatibility with CP/M.

a product of Winders \& Geist, Inc. P.O. Box 83088 Lincoin, NE 68501 402/474-3400
/AICRO

Communications

The focus of this issue of MICRO is on communications: computer-to-computer over telephone modems -including program downloading and computer bulletin boards, and computer-to-computer communication via local networks.

Remote Communications

An original article by John Kelty on CoCo and the Hayes Smart Modem has been modified by Phil Daley to work on the Apple, Atari, and Commodore 64 as well. No matter which computer you own, you now have the software you need to run this popular modem. Walter Charlton has taken a different approach to add communications to his CoCo. MODCONN: The CoCo and Modem-to-Modem mmunication shows how to add RS-232 capability without fancy hardware. On the Commodore computers you have to use some tricks to download BASIC. Stone and Cornwall show how this may be done on the PET, VIC and C64. Part of Paul Swanson's column deals with Telecommunicating with your Atari and the use of free bulletin boards.

Editorial

Local Networks

Randall Hyde provides a comprehensive introduction to local networking with in The Network Primer. He describes the seven-layered network, discusses several important network topologies, and then shows how these concepts are involved in one particular system, the NESTAR CLUSTER ONE.

MICRO Communications

One of the reasons for featuring communications at this time is that we are developing a MICRO Phone Service for subscribers. In addition to being a general purpose bulletin board for serious computerists, authors will be able to submit articles and programs, and subscribers will be able to download programs that have appeared in MICRO. Printed listings have always been a problem. The longer the program listing, the greater the chance of making typing errors. Once we have the MICRO Phone Service running, the only effect of length will be the cost of telephone connect time! We will have to establish some protocols for program loading, standards for assembler formats, and so forth. I would appreciate hearing from those of you who have had experience in this area.

Editor-in-Chief

ATARI COMPUTER OWNERS:

 Pick the positivalyperiect, pratical, peripheral package from PERCOMDATA!

Uniflnow, Atar compeiter owners who wanted to hook a penter to theil completer had only one Choice. spend about \$220for an interface device HOSEDAYS ARE OVER PEPCOMDATA has builta parallel printer-port right into its new AT88 PD model Now you can add a quality disk dive
system AND have a place to plug in a pinter SWITOUTBUVING an interiace.
The $A 588$ S 1 PDT disk driveoperates in both siggle density $88 k$ bytes formatted and double:

What nore could you want NO NTERFACE, a high quatity PERCOMEARA disk orive AN A
bultin PRUNERPORT: a al witha pice of $\$ 599$
Pick up a positivel perfect PERCOM DATA dISk drive, With printer port pronto!
Fot the name of an authonzed PERCOMDATA Deater hear yout,
callour TOLL-FREEHOTLINET-800-527-1222 NOW, OF write
for more inemiation.
PERGOM TATA
Expanding Your Peripheral Vision DRIVES NETVORKS \& SOFTWARE

for the Serious Computerist

micro Box 6502	Communication	Commodor
617/256-3649	7 The Network	17 Downloading
Publisher\|Editor.in. Chief $\begin{gathered}\text { Robert M. Tripp } \\ \text { R }\end{gathered}$	Primer Randall Hyde	BASIC on PET, VIC and C64
Robert M. Tripp	The organization and	
Associate Publisher Cindy Koche	implementation of local	Andrew Cornwall
Technical Editor Phil Daley Phil Daley	networks	A program to allow BASIC to be downloaded over a
Production Manager Nancy Lapointe	Using the Smart Modem in Your	modem
Typesetter Lynda Fedas	System:	22 DOSPLUS for
Advertising Manager Cindy Kocher	John Kelty	Commodore 64 Michael Keryan
Sales Manager C. Skip Bentle	A BASIC program that services the	Add new utility functions
Circulation Manager Linda Hensdill	Hayes Smart Modem for the following	33 Generating
Customer Service	microcomputers: Apple	Characters for the
Accounting Donna M. Tripp	Atari Atari	EPSON FX80 on
Contributing Editors Cornelis Bongers David Malmberg	Color Computer Commodore 64	the Commodore Robert M. Tripp
John Steiner Jim Strasma Richard C. Vile, Jr.	62 MODCOMM Walter Charlton	Create user defineable characters for the FX80 interactively on the
Loren Wright	A simple modem to modem communication	Commodore 64 display
$\substack{\text { MicRO is published moathly byy } \\ \text { MICRO, Chelmstord, MA Ois24. }}$ Computer		
Second Class postage paid at:Chelmsford, MA 01824 and additional mailing offices.	17 Downloading	
	BASIC on PET, VIC	40 Commodore to Smart Modem
ISSN: 0271-9002. Send subscriptions, change of address, USPS Form 3579, requests for back issues and all other fulfillment questions to: MICRO	and C64 Andrew Cornwall	 Phil Daley
P.O.Box 6502 Chelmsford MA 01824 or call 617/256-3649.	A program to allow BASIC to be downloaded over a	A BASIC program that services the Hayes Smart
Subsciption Rates: feer year):	modem into the family of	Modem for the C64
U.S. $\$ 24.00$ or $\$ 42.00$ for two years U.S. $\$ 24.00$ mail. $\$ 27.00$	Commodore computers	43 Commodore
Mexico, Central America, Middle East, North Africa, Central Africa $\$ 48.00$South America, South Africa, Par East, South America, South Africa, Par East,		Compass
		Loren Wright
Copyright © 1983 by MICRO All Rights Reserved.		High resolution graphics on the Commodore 64

Color Computer

60 CoCo to Hayes Smart Modem
John Kelty \&
Phil Daley
A BASIC program that services the Hayes Smart Modem for the Color Computer

62 MODCOMM Walter Charlton
A simple modem to modem communication program for the Color Computer

67 A VOX Input for Your CoCo
Sean Moyer
Subroutines that allow sound to be used as input to the computer

69 CoCo Bits
John Steiner
The OS-9 operating system

71 TRS-80C Reviews

46 Atari to Hayes Smart Modem
John Kelty \&
Phil Daley
A BASIC program that services the Hayes Smart Modem for the Atari

49 Atari Music Player
Tom Marshall
Compose, save, load and replay songs from your Atari keyboard

57 From Here to Atari
Paul Swanson
The ATR8000 peripheral controller and Bulletin Boards

59 Atari Reviews

General

7 The Network Primer

Randall Hyde
A primer describing the fundamentals of local networks, with specific examples on the NESTAR system

91 Interface Clinic

 Ralph TennyFactors involved in getting two or more microprocessors to work together

Apple

74 Apple to Hayes Smart Modem
John Kelty \& Phil Daley
A BASIC program that services the Hayes Smart Modem for the Apple

79 Speedload: Enhanced Apple DOS
Enirco Colombini
An enhanced version of DSO 3.3 that performs loading operations about four times faster.

71 Apple Reviews

DEPARTMENTS

2 Editorial
112 Advertiser's Index

You've got the loot ... now, GETAWAY! to a great new game from the Atari ${ }^{\ominus}$ Program Exchange!

It's all there! The squall of sirens, the crazy turns down endless city streets, the anxious search for ill-gotten gain, the race against time for a safe place to stash your cash! Now your gas tank is nearly empty and night is about to fall. The coppers are closing in fast. Before you learn again that crime doesn't pay...Quick! GETAWAY!

Ask for GETAWAY! at your local Atari software retailer, or order direct. Phone 800-538-1862, or 800-672-1850 in California. Or write Atari Program Exchange, P.O. Box 3705, Santa Clara, CA 95055

Cassette (410)	APX-10195 32K	$\$ 29.95$
Diskette(810)	APX-20195 32K	$\$ 29.95$

For direct orders, add $\$ 2.50$.

You're in for a nasty spell ... unless you stop the Typos!

In the dusky world beneath your keyboard the gruesome Typos dwell ..waiting to attack! Term paper due tomorrow? Got to get that book report typed? Fool! The Typos will devour your letters as you type! That could spell D-O-O-M-E for you!
Before you start typing, get down to the real work: destroy the Typos before they destroy your proase.
uh, proze...prrrose...Oh NO! THE TYPOS!!! Get TYPO ATTACK, a grand and glorious game from Atari® Program Exchange. It might even improve your typing!
Ask for TYPO ATTACK at your local Atari software retailer, or order direct. Phone 800-538-1862, or 800-672-1850 in California. Or write Atari Program Exchange, P.O. Box 3705, Santa Clara, CA 95055.
Cassette (410): APX-10180 8K \$29.95 Diskette (810): APX-20180 16K \$29.95 For direct orders, add $\$ 2.50$.

The

 Network Primerby Randall Hyde

In the early sixties the integrated circuit was introduced. Engineers were delighted to pay $\$ 20.00$ for a single DIP package containing four NAND gates. Due to the expense involved, every device designed using these devices was optimized to use as few of these devices as possible. With every technological advance that came along the high price of silicon dropped dramatically. Today you can buy that same NAND gate for less than fifteen cents in suitable quantities.

Since computers designed in the sixties required thousands of those $\$ 20.00$ NAND chips, computers (specifically CPU's) designed at that time were very expensive. Since CPU's were so expensive computer center administrators wanted to squeeze every bit of useful computational power out of their system as was possible. It was considered heresy to leave a computer idle. A milliondollar instrument sitting around idle was a very expensive waste of money.

The same advances in silicon technology that gave us the fifteen cent NAND gate also gave us the microprocessor. It is now possible to buy a complete computer for less than $\$ 2.00$ (Intel just announced an 8048-type microcomputer for less than $\$ 2.00$ containing CPU, RAM, ROM, and I/O - everything you need for a complete computer system|. Even considering a personal computer, such as the Apple II system, that sells for $\$ 1,000$ to $\$ 2,000$ it becomes apparent that the CPU utilization is not very important - if the computer sits around all day with a blinking cursor waiting for input from the user, no big deal, for the same million dollars that bought the System/360 in 1965 you could buy 500 to 1,000 personal computers and get more through-put even if over threequarters of the computers sat idle at any given time.

There were only a few problems associated with using 1,000 personal computers instead of a single, large computer. First, although the overall through-put is increased tremendously, certain compute-bound operations such as math-intensive floating point calculations will proceed much slower on a personal computer than on a larger computer complemented with a floating point instruction set. Second, while the price of the CPU has dropped dramatically, electromechanical devices such as printers, disks, tape drives, and other such devices haven't dropped in price by the same proportion (i.e., these devices are still relatively expensive). Lastly, with the big expensive computers several users and processes could communicate with one another and share databases. With the localized personal computer it is difficult, if not impossible, for dif-
ferent users to share a common database or communicate with one another. For this reason many computer departments continue to purchase large computers instead of decentralized personal computers.

The need to share peripheral devices is, of course, very important. While a single user may have the need to use a printer, he might not be able to justify the high cost of such a device for use at his work station alone, especially if it is a special purpose printer such as a letter quality printer that will be used infrequently. It would be much better if a lot of different users could have access to a single letter-quality printer. Since each user would only be using the letter quality printer a small fraction of the time, it would almost always be available for use whenever a user desired to print something on it. Since the printer is available to several users, instead of just one, its utilization would be much higher than if it were connected to a single work station. Using the same idea hard disks, realtime clocks, floating point processors, and other special devices would be much more cost effective if they could be shared amongst several users.

Several manufactures have created special multiplexing devices that allow several personal computer users to share a particular hardware device. For example, CORVUS has a device called the CORVUS Constellation that lets several microcomputer systems share a CORVUS hard disk system. Other manufacturers provide black boxes that let several personal computer users share printers, tape drives, and other peripheral devices. While this approach lets personal computer users share peripheral devices (and to a lesser extent, share databases), it suffers from the drawback that it does not allow users to easily communicate with one another, nor does it let users share exotic peripherals for which there is no multiplexer available.

The Answer: A Network

To solve the problems inherent with a bunch of autonomous computers a technique employed by larger computers is employed: the computer network. A computer network is simply some medium that allows two or more computers to communicate with one another. In a very general sense, the RS- 232 line is an example of a computer network since it allows computers to communicate with one another. Real-life computer networks usually use a different transmission scheme than RS-232, but the idea is exactly the same-some method for transmitting data between two computers is used.

In general there are two types of computer networks: Remote networks and Local networks. A remote network is usually associated with large mainframe computers. Anyone who has connected to the SOURCE via TELENET or some other service has used a remote networking system. Remote networks are seldomly used as a means to share peripherals such as printers, hard disks, etc. since data transmission rates are very slow and the end user typically has little access to such device iso the hard copy output, for example, could be picked up|. Remote networks do allow access to shared data bases such as the UPI and API data bases and stock quotation from the DOW JONES and other financial systems. In general, however, remote networks are of little interest to the group of personal computer users who wish to share a common set of peripheral devices and files.

The local network is used to connect various devices that are located within a short distance of one another. For example, within an office building you might place a fast dot-matrix printer in the engineering lab, in the accounting department, in the sales department, and in the shipping departments. Persons using a local network would send draft output to the printer nearest their workstation. A single letter-quality printer might be found in the sales department. Anyone could use the letter-quality printer by sending the data to the proper device. The choice of dotmatrix printer would be made simply by distance to the printer. The people in the engineering lab would probably use the printer in the engineering lab since it is closer falthough if the printer in the engineering lab is tied up for a while output could be directed to the sales department's printer).

The local network also lets several individuals share a single high-speed, high-capacity hard disk. This also allows several users to share a common database and other files. For special applications such as floating point operations, a special floating point processor can be placed on the network and complex floating point operations can be loaded into the floating point processor for further calculations.

Finally, a local network lets individual users communicate with one another. Since, after all, a network is simply a medium of communication between two or more computers, two users can easily communicate by sending data from computer to computer. This allows conversations to take place "CB" style over the network.

Within a local network there are two types of users: clients and servers. A server is a computer system on the network (a computer system on the network is called a nodel that provides a service to other nodes. For example, a file server may consist of a small computer system connected to a hard disk. It recognizes requests from other users in the system and reads data from (or writes data to) the hard disk. A client is some node that requests service from a server. For example, a typical user requesting data from the file server is a client of the file server. Note that a node can be both a server and a client. For example, the file server may become a client of a node containing a realtime clock in order to obtain information to "date-stamp" a file.

The Seven-Layered Network

Most of the modern network technology is directly attributable to researched performed by the Department of Defense and several major universities. A few years back the International Standards Organization (ISO) decided to create a draft containing several standards for implementing network systems. A subset of the standard (in one fashion or another) is implemented in almost all modern networking systems. Therefore, an understanding of the ISO model is extremely useful for understanding specific networking systems.

The ISO model divides the basic networking system into seven major components or layers. Each successive layer builds on the layer just below it (see figure 1). The physical layer is the electrical and mechanical specifications of the networking system. For example, consider the RS-232 standard. Mechanically, a DB-25 connector is used with certain pins allocated certain functions. This is the

Application Layer
Presentation Layer
Session Layer
Message/ Transport Layer
Network Layer
Data-Link Layer
Physical Layer

Figure 1: ISO seven-layer network model.
mechanical specification of the RS-232 standard. Electrically, the signal is allowed to vary between 0 v and +12 v for a logic one; and between 0 v and -12 v for a logical zero. These specifications are the electrical specs for the RS-232 system (granted, somewhat abbreviated). The Physical Layer for any network system defines the connection in these terms, the connector used, voltage ratings, type of transmission (phase encoded, pure digital, analog, etc.), and other specifications of interest to the engineer wiring the system together.

The Data Link Layer is responsible for the reading and writing of data to the network, error detection land possibly correction), and the assembly and disassembly of data packets. More specifically, the data link layer is presented with a packet of data containing, in addition to the data to be transmitted, a destination address and other useful information. The data link layer adds a checksum (or other error-detecting scheme) to the end of this packet and transmits the data over the network. Note that the packet was given to the data link layer as a complete package, the data link layer did not have to assemble the packet a byte at a time. Likewise, when the data link layer reads data from the network it reconstructs the data packet transmitted and presents the higher levels with a complete, error-free packet of data. In the event an error is detected the data link layer disregards the entire transmission and requests a retransmission. The higher layers are completely unaware of this. Most networks provided error-free data above the data link layer.

The Network Layer is usually found only in the remote network systems. The purpose of the network layer to to insure that data packets move smoothly throughout the network system. In most remote network systems data packets being sent from system A to system C must first

MicroSpec

SOFTWARE MEANS BUSINESS FOR THE COMMODORE 64

When it's time to get serious, it's time to boot up MicroSpec business software. Our complete line of business software is made to give you some real applications for your Commodore 64. From data base management to full accounting software, we have the package for you.
It's attention to detail that makes our packages so beautiful and makes them stand out from the
 rest. We realize that most people are first time users, so we designed all our packages to be completely menu driven and user prompted for each input. We also know that most people use only one disk drive, so we designed all our packages to virtually eliminate disk swapping. Other features like non destructive input routines really make our software easy to use. But all this doesn't restrict you. Pure random access file structure maximizes your disk capacity and allows you to bring up any record for viewing in less than a second.

In our efforts to put together the best packages available, we worked on more than the software. We took the same approach with the documentation as the software. We made it complete and easily understood for the first time user. We even provide sample reports in many cases.

The Demonstration Package, which shows how each program runs, is available for $\$ 19.95$. So, if you're serious about your 64, call or write for a complete brochure or go right down to your nearest computer retailer for a demonstration.

WHEN YOU AND YOUR 64 ARE READY TO GET DOWN TO BUSINESS GIVE US A CALL

pass through system B. Obviously the data being transmitted to point C is of little interest to the application program running on machine B, but due to the structure of the network system B must store and forward the data being received from system A on to system C. The network layer handles this problem as well as other problems associated with congestion and flow control.

The Message/Transport layer concerns itself with machine-machine communications. The transport layer is responsible for taking a complete message and "transporting" it to the destination machine. Likewise this layer is responsible for accepting a message and presenting the whole message to higher layers in the protocol.

The transport layer is responsible for taking a complete message, breaking it up into smaller packets |if necessary], and presenting these packets of data to the network for data link) layer for transmission. This allows the higher layers to treat data strictly in terms of message units without having to worry about maximum message lengths, minimum messages lengths, the type of transmission, etc.. Another responsibility of the transport layer is handling the type of communication. There are typically two types of transmission "modes":

Virtual Circuits and Datagrams.

Datagrams are very important in remote networks where each data packet can take one of several different routes. In a datagram model the network simply accepts messages and attempts to transport them to the destination as a single unit. Datagrams may arrive out of order or not at all. The receiving station is responsible for collecting these datagrams, assembling them in their proper order, and making sure that all datagrams have arrived and are error-free.

A virtual circuit attempts to treat the network system as though the source and destination stations were the only systems on the network. In this type of setup the network appears as a single circuit between the source and destination stations. Virtual circuits always provide an error-free transmission channel where no data packets are lost and they always arrive in the order they were transmitted in. Once the transmission is set up, all data is transmitted at which point the virtual circuit is disconnected. Most local networks use some combination of virtual circuit/datagram service.

The Session layer is the true user's interface into the network. The session layer is responsible for setting up a communication channel between users and tacking on the necessary address information for each packet transmitted. The session layer is also responsible for making sure the transmission of a message isn't terminated halfway through. For instance, a database management program would be completely destroyed if a session was terminated halfway through the update of a particular record. Typically, the session level would gather all the data required by a particular routine and present the message as a complete package, not allowing the system to continue operation until the entire package was received.

The Presentation layer is typically a small collection of routines that handle data compaction, encryptionation, etc.. This layer is rarely implemented in local networks for remote networks for that matter).

The Application layer is the user program making use of the network system. The definition of this layer is entirely up to the user.

A Network System You've Used Since Childhood

Believe it or not, you've been using a remote network for a good part of your life. Thanks to Alexander Graham Bell most of the people in this country, even those who've never seen a computer in their life, are well aquainted with the most important network of all: the telephone system. Bell labs (the R \& D portion of the Bell system) has put forth considerable research into optimizing the telephone system. Luckily, many of the concepts developed by Bell labs can be directly applied to computer networks. With this in mind, a discussion of the telephone system may be helpful before discussing computer networks.

In many respects, the telephone system can be divided up into the seven layers just described for computer networks. For example, at the physical level you have the connector plug in the wall, the allowable voltages, the number of wires, and (for all you modem fans) esoteric things like the ringer equivalence value. The data link layer is the circuitry required to handle the analog transmission from the mouthpiece to the telephone line. The network layer is responsible for picking out the route which the phone call will take |yes, sometimes a call from L.A. to San Francisco gets routed via Washington D.C.). The transport layer defines a virtual circuit mechanism for data transmission (after all you do want the data to arrive in order, it would be uncool if you said "Hello there" and it came out "there Hello" at the other end). The session layer consists of the circuitry required during dialing and the maintenance of the virtual circuit during communication. The presentation layer (if present) could be represented by one of those magic "black boxes" that the CIA uses to scramble and unscramble phone conversations. And the applications layer is the actual phone conversation taking place. As you can see, the OSI network structure provided by the ISO model is very general and easily re-worded to fit almost any communication system in existence.

It was noted earlier that Bell Labs has done quite a bit of research into network structures, much of which has found its way into many of the modern network designs. This combined with the DOD's ARPANET, IBM's SNA, and other early networking systems has structured many of the modern networking systems including ETHERNET, OMNINET, NESTAR, and others.

An Introduction to Local Networks

The need for local networks grew from two basic desires: wanting to share expensive peripheral devices among several inexpensive CPU's and wanting to improve communication between various workstations.

Consider the average sales office. At any given time you may have several secretaries using word processing stations, executivè using some financial modeling system (VISICALC anyone?), salesmen checking stock and placing orders on computer terminals, and clerks maintaining the inventory using workstations in the warehouse. This much activity would bog any conventional timeshare system down tremendously. Could you imagine how

No. 68 - January 1984
useful VISICALC would be if it took 20 seconds to perform each calculation? So a timeshare system would be out of the question. Yet the individual members have to be able to share data, for example whenever a salesman sold something it would be nice if the stocking clerk was alerting so that he could order a replacement. Likewise, you wouldn't want two salesmen selling the same item if it is the last one in stock, or at least you would want to alert them so that they could advise the customer of any possible delays. By combining a group of small computers into a network it is possible to allow members of a organization to easily share computer data without the hassles of using a timeshare system.

Since there is a need to provide many of the employees with access to some common data llike the number of items in stock| a bunch of isolated microcomputers won't be able to completely solve the problem. But if those same microcomputer systems could be connected together so that peripherals, data, and other communications lines could be shared the problem could be solved. Such wishful thinking lead to the development of the local network.

The ETHERNET networking system is an example of a local network. The ETHERNET system allows office employees to share databases, peripherals, programs, "chat" between stations, share a single communications line (such as TELEX/TWX datacom lines), and have access to larger, expensive computer systems. ETHERNET features a high-speed data communications protocol that provides an almost instantaneous transfer of data. The problem with ETHERNET is that in addition to its high speed, it is also very high cost. A controller card for a microcomputer may well cost you $\$ 4000$. When you stop and realize that one of the main reasons for using a network is to save the expense of putting a $\$ 2,000$ printer at every station you begin to realize that ETHERNET is not yet cost effective. Luckily, there are altematives to ETHERNET.

The Shape of Things to Come: Network Topology

A networking system is used to connect several computer systems together. Each computer system within a network is called a node or a station. There are all kinds of ways to connect several nodes together, any child playing with tinkertoys can attest to that fact. In a networking system there are various layouts possible when connecting a group of computer systems together; the layout, or graph, of the computer network is called the network topology. While there are infinitely many ways to connect up computer systems in a network there are three basic topologies from which most others can be derived. These topologies are the STAR, RING, and BUS (or tree) topologies.

The STAR topology (see figure 2) consists of some central node through which all communication must pass. The STAR topology is probably the most obvious since this type of layout is used by large mainframes and minicomputers which are connected to computer terminals. In a networking system, if a node other than the central node wished to transmit data to any other, the transmission would have to go through the central node in order to reach the destination node. This form of communication has two drawbacks. First, if the central node goes down so does the whole network. Secondly, if the central node is

Figure 2: Star Topology.
slow, the entire network will be slowed down since all communication must go through the central station. Even if the central node is fast, attaching additional stations to the system will cause severe network degradation since the central node becomes vastly overworked. The STAR topology does have one highly redeeming value. Much of the necessary connecting hardware is in place in many business offices-the PBX telephone system. The PBX (or private branch exchange) is the little operators console you find on the desk of the front receptionist in any large corporation. While intended to handle voice transmissions, most PBX's are easily upgraded to handle data transmission. The PBX system is a good example of a network using the STAR topology. Since all the wires are already in place, many businesses will opt to use their existing equipment thus saving thousands of dollars in installation costs.

The RING topology (see figure 3) was developed mainly for remote networks between large computer systems. The basic idea behind a ring network is that data packets

Figure 3: Ring Topology.
are passed from machine to machine in a "hot potato" fashion until the data packet arrives at the destination system. Since few local networks use the RING topology, there's little need to discuss it any further here.

The BUS topology (see figure 4) is the favorite topology amongst the various local networks. ETHERNET, OMNINET, NET/80, SOFTWORKS, Z/NET, and most other local networking systems use some variation on the BUS topology. The BUS topology is high robust. Any component (with the unlikely exception of the connecting cable) in the network system can fail and the network will still operate. The BUS topology allows you to add and remove nodes at will (in some cases without powering the system down). The BUS topology has another big advantage: often the circuitry required is less expensive than that required for other networking topologies.

Network topology is very important in remote networks where delays due to routing can be significant. Many remote networks use a store and forward approach where one station transmits data to an adjacent station from which point it is transmitted on down the line. Since it takes time to receive and retransmit a package of data, delays grow proportionally to the number of systems in a ring topology network (ring topologies are in many large networking systems). Since the network nodes are stationed fairly close to one another in a local network, the bus topology is normally used. The bus topology removes the problem of routing delays, but requires special cables and hardware which would be much too expensive for widely separated stations.

Figure 4: Bus Topology.

Data Transmission in a Networking System

Since the same transmission medium is used by all the nodes on a network, some supplemental information must accompany each data transmission. For example, a destination address must be tacked onto every transmission so that the intended receiver can recognize a data transmission. Other auxiliary information, such as a length field, type field, acknowledgement field, and checksum may be tacked onto the data.

A block of data containing the necessary source, destination, checksum, data, and other optional fields is
called a frame or data packet. Data packets are constructed at each level in the network protocol. For example, the application layer sends data (possibly a character at a time) to the session layer where it is sent to the message/transport layer with a destination and source address. The message/transport layer collects the data until a complete frame is constructed, adds any required length, type, and other necessary fields and passes the data packet to the data link layer for transmission. The data link layer adds the checksum and any necessary acknowledgements and transmits the data over the network.

One important feature of a networking system is its data transmission rate. The data transmission rate is usually measure in bits per second (BPS) which is also called BAUD. For example, the familiar 300 BAUD line used in telecommunications is a three hundred bits per second data transmission rate. Many remote networks operate at 300 BPS and 1200 BPS (using leased lines). These data rates, however, are very slow. Most local networking systems operate in the range of one to twenty MBPS (megabits per second) which is 1,000 to 60,000 times faster than the lines used by the remote networks. The maximum data transmission rate of a networking system is called its bandwidth. Even though a network is capable of operating at 1 MBPS, the medium can operate at 300 BPS if need be.

In almost any networking system there isn't constant traffic on the net. So although a cable (or whatever) is capable of handling data at high speeds, the average data transmission rate is usually much lower than the bandwidth of the transmission medium. If the average bandwidth is low because no one is transmitting data, it's no big deal. After all, the average network user isn't interested in the quality of the cable being used to connect nodes, he's only interested in response time. If the average data transmission rate is only 50 BPS on any given day, but users get instantaneous response then things are just fine. But if the network is noisy, congested, or has some other problems, many packets will have to be retransmitted thus cutting the average transmission rate and the response time down considerably.

At any given time only one data packet can be in the process of being transmitted over a single circuit. If two nodes attempt to transmit over the same wire at the same time both transmissions will be garbled up and the transmission will be completely invalid. Such an occurrence is called a collision. Collisions occur most often in a network using a bus topology since must nodes in such a system share the same transmission circuitry. Receiving stations have no way of determining if a collision has occurred. If fact, the only time a receiving station can determine that a collision has occurred is when it performs some sort of error check and the checksum doesn't match.

One of the major problems with a collision is that the entire data packet must be retransmitted. Which means that the average data transmission rate is reduced. This is compounded by the fact that data transmissions occur asynchronously. That is to say anybody can start transmitting whenever they please. So halfway through your transmission someone else could start talking and wipe out your entire message. This problem is easily solved by by first listening to the bus to see if anybody else is transmitting. If someone else is using the transmission medium you wait until they are through. If there is no trafNo. 68 - January 1984

Products for Commodore, Atari, Apple, and others!

THE MONKEY WRENCH II A PROGRAMMERS AID FOR ATARI 800 NEW AND IMPROVED - 18 COMMANDS
PLUGS INTO RIGHT CARTRIDGE SLOT

If you are a person who likes to monkey around with
the ATARI 800, then THE MONKEY WRENCH II is for you!! Make your programming tasks easier, less time-consuming and more fun. Why spend extra hours working on a BASIC program when the MONKEY WRENCH can do it for you in seconds It can also make backup copies of boot type cassette programs. Plugs into the right slot and works with ATARI BASIC cartridge.
The MONKEY WRENCH provides 18 direct mode commands. They are: AUTOLINE NUMBERING - Provides new line numbers when entering BASIC program lines. RENUMBER - Renumbers BASIC's line numbers including internal references. DELETE LINE NUMBERS

$\$ 59.95$

- Removes a range BASIC line numbers.

VARIABLES - Display all BASIC variables and their current value. Scrolling - Use the START \& SELECT keys to display BASIC lines automatically. Scroll up or down BASIC program. FIND STRING - Find every occurrence of a string, XCHANGE STRING - Find every occurrence of a string and replace it with another string. MOVE LINES - Move lines from one part of program to another part of program. CDPY LINES - Copy lines from one part of program to another part of program. FDRMATTED LIST - Print BASIC program in special line format and automatic page numbering. DISK DIRECTORY - Display Disk Directory CHANGE MARGINS - Provides the capability to easily change the screen margins. MEMORY TEST - Provides the capability to test RAM memory. CURSOR EXCHANGE - Allows usage of the cursor keys without hoiding down the CTRL key. UPPER CASE LOCK - Keeps the computer in the upper case character set. HEX CONVERSION - Converts a hexadecimal number to a decimal number DECIMAL CONVERSION - Converts a decimal number to a hexadecimal number. MONITOR - Enter the machine language monitor.
In addition to the BASIC commands, the Monkey Wrench also contains a machine language monitor with 16 commands used to interact with the powerful features of the 6502 microprocessor

"High-Speed Cassette Load and Save!'
 $\$ 39.95$ (includes Cartridge and Manual)

"'Don't waste your Life away waiting to LOAD and SAVE programs on Cassete Deck.'
Load or Save 8 K in approximately 30 seconds! Try it - your Un-Rabbitized VIC takes almost 3 minutes It's not only Fast but VERY RELIABLE.
Almost as fast as VIC Disk Drive! Don't be foolish Why buy the disk when you can get the VIC Rabbit for much, much less!
Easy to install - it just plugs in Expansion Connector on rear. Works with or without Expansion Memory. Works with VIC Cassette Deck.
12 Commands provide other neat features.
Also Available for 2001, 4001, and 8032

TELSTAR 64

Sophisticated Terminal Communications Cartridge for the 64.
PFO 100 OOD CP $<$ D $1>02$ BELL $\quad 12: 30: 00 \quad 10: 14: 36$ (TELSTAR's Status Line)
Don't settle for less than the best!

- Upioad/Download to/from disk or tape
- Automatic File Translation.
- Communicates in Industry Standard ASCII.
- Real-Time Clock plus Alarm Clock.
- Line editing capability allows correcting and resending long command lines
- 9 Quick Read functions.
- Menu-driven.
- Similar to our tamous STCP Terminal package
- Works with Commodore Modems and supports auto-dialing

The best feature is the price - only $\$ 49.95$ (Cartridge and Manual)

ATARI, PET, AND CBM 64 EPROM PROGRAMMER

Programs 2716 and 2532 Inclumes hardware
EPROMs. Includes
and software. PET $=\$ 75.00$

- ATARI and CBM 64 (both
include sophisticated machine
language monitor) $=\$ 119.95$
Prowiter Printer - Excetient dol matix print Parallel $=\$ 48900$
Serial $=\$ 60000$ IEEE $=\$ 58900$

Machine Language Monitor Cartridge

for the CBM 64
More than 20 commands allow you to access the CBM 64's Microprocessors Registers and Memory Contents. Commands include assemble, disassemble, registers, memory, transfer, compare, plus many more.
Someday every CBM 64 owner will need a monitor such as this.
Cartridge and Manual - \$24.95

CBM 64 Debugger

A more sophisticated Machine Language Monitor/Debugger. 20K of object code makes this a powerful tool. Works as a symbolic debugger for the MAE assembler. Diskette and Manual - \$49.95

More than just an Assembler/Editor! Now for the " 64 "

It's a

 Professionally Designed Software Development System

NOW, The Best for Less!

- Designed to improve Programmer Productivity Similar syntax and commands - No need to revearn peculiar syntaxes and commands when you go from PET to APPLE to ATARI
Coresident Assembler/Editor - No need to load the Editor then the Assembler then the Editor, etc. Also includes Word Processor, Relocating Loader and much more

User Group for MAE formatted disks

- STILL NOT CONVINCED? Send ior free spec sheet!

TRAP 65 is plugs into y execution o and provide machines For PET/AP Reduced fr	TRAP 65 TRAP 65 is a hardware device that plugs into your 6502's socket Prevents execution of unimplemented opcodes and provides capability 10 extend the machines' instruction set. For PE T/APPLEISYM Reduced from $\$ 14995$ to $\$ 6995$
OC Hayes Smart Modem $=\mathbf{\$ 2 3 5 0 0}$ OC Hayes Micro Modem II $=\$ 28900$	Rana Disk Drive - 375 4 Drive Controlier - 114

fic on the network then you can start transmitting. This method, called the Carrier Sense Multiple Access (CSMA) improves efficiency tremendously. CSMA does not completely eliminate collisions, but it does cut them down tremendously.

A collision can still occur if two stations happen to look at the bus at the same time and find that the carrier is absent. Since data transmission takes place at somewhat less than the speed of light there is a finite (although small) time delay between the time a station puts a carrier signal on the network and it travels to all the stations. This time, although measure in microseconds, is quite long compared to the cycle time of a typical personal computer. For example, in a normal local networking system this time interval, called the round-trip transmission time might be $30-60$ microseconds. If two nodes attempt to transmit data within one round trip transmission time there will probably be a collision. Collisions in a CSMA collision detection system are quite rare unless there is an enormous amount of traffic on the network.

An Introduction to the NESTAR CLUSTER ONE

There are hundreds of different networking arrangements, with new ones being introduced everyday. Therefore, in order to discuss some specific details a specific system must be discussed. The remainder of this paper will concern itself with the NESTAR CLUSTER/ONE MODEL A local networking system.

The Cluster/one lets you connect up to 64 Apple II computers together in a local network. Each Apple is interfaced to the system via a plug-in card that attaches to the Apple's bus. This circuit card contains the necessary interface circuitry as well as 1 K of RAM and 2 K of ROM. Nodes in the Cluster/one network are interconnected with 16 -conductor cable similar to that used to attach disk drives to an Apple II.

The Cluster/one transfers data at 240 KBPS, quite slow for a local network. Slow, however, is a relative term. 240 KBPS is roughly 1,000 times faster than the 300 BAUD lines used by the SOURCE and other telecommunications systems. 240 KBPS is the maximum data rate sustainable by software methods using a 1 Mhz 6502 . By comparison Xerox's ETHERNET transfers data at 10 MBPS yet the circuitry required to support ETHERNET is better than ten times the cost of the Cluster/one. In general, the 240 KBPS is fast enough. To put it into concrete terms, you can transfer 64 K of data in less than four seconds using a 240 KBPS data transfer rate, that's much faster than a floppy disk or printer.

The Structure of the NESTAR System

The NESTAR Cluster/one implements three of the lowest four levels defined by the ISO reference model of Open Systems Interconnection (OSI). These are the physical, data-link, and message/transport layers. The networking layer is usually not present in a local network, and is absent from the Cluster/one networking system. The remaining layers (session, presentation, and application) are either supplied by the user or left unimplemented. How the lower layers are implemented is determined by the configuration of the network and the software purchased with the system.

One of the most important network design considerations is the network topology. The Cluster/one nommally uses the bus topology. Due to the structure of the hardware almost any topology can be accommodated. Typically, however, the bus topology is used because it is the least expensive and the software was designed with the bus topology in mind.

A typical NESTAR consists of several user stations (clients) and one or more file server stations. A file server consists of a dedicated Apple computer with an $8^{\prime \prime}$ floppy or $14^{\prime \prime}$ hard disk. All the other users on the net share the resources provided by the file server. The disk drives supported by the Cluster/one provide 1.2 megabytes to four Gigabytes of disk storage using one or more drives on the system. In addition to the file server, the dedicated Apple also provides a clock/calendar server so that files sent to disk can be "time-stamped" with the creation and update time. The Cluster/one network interface cards were designed using low-cost non-critical components in an effort to keep the total package cost down. It would be insane to require a $\$ 4,000$ interface card on a computer system that only costs $\$ 2,000$ (don't laugh, Intel is selling ETHERNET interface cards for $\$ 4,000$). The network interface was optimized for low-cost and reliability at the expense of speed. As mentioned previously, the bandwidth of the NESTAR system is quite low.

The Cluster/one interface card uses a passive interface. This gives you the ability to power up and power down stations on the net without adversely affecting the network. It also allows you to add new nodes to the system without having to power the system down or even halt network communications. In the event of a station failure, the network may continue to function providing the controller card itself isn't damaged. In many topologies |like the ring and star topologies) the failure of one or more stations can shut the whole network down. In the case of the Cluster/one, the net will continue to function as long as at least two stations are functional.

The NESTAR system using a 16 -conductor cable to connect nodes in the net. This is the second unusual feature to the Cluster/one system, most local networks use a twisted pair or coax cable (two conductors). Of the 16 -conductors, eight are used to transmit data in a byteserial fashion. By transmitting the data eight bits at a time the effective bandwidth is increased by eight. Although the system is transferring data at around 240 KBPS, the data is actually being transferred at a data rate of 30 KBPS on any given data wire. This gives the 6502 roughly 34 cycles in order to perform the necessary checksum calculations and store the data in memory or fetch the next byte from memory. An additional line is used for the carrier signal. When active, someone is attempting to use the network, when inactive the network is free and ready for transmission. Three of the remaining seven lines are used for handshake using the standard data available/data taken/ready to accept handshake protocols. The remaining four lines are signal grounds.

To transmit data over the network a controller card first checks to make sure everyone is listening and then it places the data on the bus. The data available line is set active and the destination node senses the data available line and reads the data off of the bus. Once the data is read the data taken signal is set active and the source station may transmit additional data. Due to the structure of the net-
work, it's real easy to reverse the direction of the data lines and acknowledge a data transmission. This fact is used by the NESTAR software to handle frame acknowledgements as will soon be pointed out.

The Cluster/one system is highly tolerable of transmission errors. First of all its low bandwidth allows inexpensive flat ribbon cable to be used instead of expensive coaxial cable. Secondly, rather than use extra-cost passive terminators in the system, the software was designed to accept unterminated connections by providing a software delay whenever data was placed on the bus. This delay allowed all the ringing and echoes to die down before attempting to read the data on the bus. By running at such a slow data rate (30 KBPS /conductor) many of the problems associated with transmission lines is avoided.

All data transmitted over the NESTAR CLUSTERBUS (a possibly trademarked name for the 16 -conductor interconnect) is transmitted in a purely digital form. No phase encoding (like that used by ETHERNET) is performed, nor are the signals converted to some type of analog signal before transmission. This simplifies the data conversion process and likewise lowers the cost of the NESTAR system.

The NESTAR Data-Link Layer

The data-link layer in the Cluster/one is implemented in hardware and firmware. The software required for the data-link layer is contained in the 2 K byte ROM on the NESTAR interface card. The data-link layer is responsible for transmitting data onto the net and accepting data from the net. The data link layer attaches a checksum to the end of a transmission and checks the checksum value at the end of a transmission. It is responsible for handling retransmissions in the event the data wasn't transmitted properly. The data link layer is also responsible for mediaaccess scheduling, addressing, flow control, and congestion control. To sum it up, the data link layer is responsible for providing error-free data transmissions between two stations on the network.

Transmitting data:

The data link layer is presented with a data packet from the transport layer. The data packet is of variable length and consists of 4 n bytes where n is the number of bytes of data to transmit. The first byte transmitted is the source address. This is used to detect a collision on the Clusterbus. If two stations attempt to place their source addresses on the bus at the same time at least one of the transmitting stations will recognize a collision since all source addresses are different. If a collision does occur, all stations recognizing the collision will jam the bus to make sure that everyone else sees the collision as well. The data-link layer only checks for collisions during the first few bytes of transmission. Later collisions during the transmission of the data frame are highly unlikely since the carrier signal is checked before attempting to transmit data. In the case some station erroneously transmits data a checksum error will occur and both packets will have to be retransmitted. By not checking for collisions after each transmitted byte, the data transmission rate is increased.

After the cable has been allocated (by placing the source address on it) the source station places the destination address on the bus and, after a suitable delay, ac-
tivates the carrier control line. On the active edge of the carrier control line hardware on each of the interface cards triggers an address comparator that compares the address on the Clusterbus to the source address of the particular card. If a match is made then the software in the destination interface will be activated in order to read the data packet being transmitted.

After the destination address is placed on the bus and accepted by the source station, the type and length bytes are transmitted. Following the length byte, 'length'' bytes of data are transmitted over the network. During the transmission of the type, length, and data bytes the source station is constantly computing a checksum. At the end of the data transmission the 16 -bit (two byte) checksum is transmitted over the network.

Once the checksum is transmitted the data packet transmission is complete-almost. The only thing remaining is to make sure that the data packet was properly received. In order to check that the data packet was correctly sent the source station reverses its data lines and becomes a receiver. The destination station transmits a single byte containing a ACK (acknowledgement) or NAK (negative acknowledgement) code. If a NAK code is received then the source station retransmits the data frame beginning with the type field. If an ACK code is received then the source station frees the network bus by setting the carrier line inactive.

Data Reception:

Receiving data is almost the converse operation to transmission. Data reception begins when the destination hardware recognizes its address on the bus. Once the destination hardware accepts the destination address from the bus it reads the type and length fields respectively. The destination interface software begins calculating the checksum with the receipt of the type byte. Once the length byte is accepted the destination station reads that many data bytes from the bus. After the data bytes are read two checksum bytes are read and the final checksum is checked. If the checksum is ok then the destination station transmits an ACK code to the source station. After the ACK is transmitted the destination station goes on about its business. If the checksum didn't match, then a NAK code is transmitted to the source station and the destination station waits for a retransmission.

Congestion and flow control are also taken care of by the data-link layer. Flow control (making sure the source doesn't transmit data any faster than the destination can receive it) is handled automatically by the hardware. A new byte isn't transmitted until the old one is taken. Flow control isn't quite that simple however. For example, if a destination station is powered down in the middle of a transmission the source station would be left hanging in a locked-up state if a timeout mechanism was not provided for. Checking for timeouts also comes under the heading of flow control since making sure that the destination station is accepting the data fast enough is just as important as making sure the transmitting station doesn't transmit data too fast. This prevents stations from monopolizing the network if for some reason they decide to start accepting data at only one byte per minute.

Congestion control is possibly more important than flow control in the Cluster/one. Congestion control deals
with preventing too many users from accessing the network at any given time. Congestion control is handled in one of several methods. Since the Cluster/one uses a CSMA collision detection the number of collisions is reduced tremendously. Whenever a large number of stations start wanting to use the bus, however, the number of collisions rises dramatically. While the bus is jammed and garbage is being transmitted the average data transfer rate is sorely reduced. Worse than that, it's reduced at the time it's needed the most when there are a lot of stations requesting network service.

When a collision is detected, the stations recognizing the collision back off of the network (i.e., attempt to set the carrier line inactive) and jam the bus so that all stations on the Clusterbus recognize the collision. Once the jamming is complete each station attempting to transmit waits a small, random amount of time and tries again. It should be obvious why a random amount of time is used, if everyone waited the same amount of time a collision would be sure to re-occur. By waiting a random amount of time (instead of a fixed, but different, amount of time) all stations will be given equal priority on the bus. Another responsibility of the congestion control is to make sure that a pair of stations don't hog the bus. As you will soon see it is possible to hold the carrier line active while several data frames are transmitted. The congestion control portion of the data-link layer is responsible for making sure no one hogs the bus for too long.

The Message/Transport Layer

The next layer of protocol in the Cluster/one system is the message/transport layer which manages the handling of messages and conversations among stations. Due to the fact that the length of a data packet is limited to 260 bytes 1256 bytes of data, two bytes for type and length, and a two-byte checksuml data must be transmitted in a datagram fashion. Remember, in a virtual circuit operation the source and destination stations connect just once and then all data is transmitted across the line until the transmission is complete. In a datagram system data packets, or datagrams, are transmitted a block at a time with the receiving station making heads or tails of the received data. Since you can transmit a maximum of 256 bytes in a data frame on the Cluster/one the system is limited to datagram service. Since, in the Cluster/one, datagrams are always transmitted in order and are never lost, a sort of "pseudo-virtual circuit" operation can be achieved by transmitted datagrams back and forth between two stations.

The simplest form of communication is a one-way, single-packet transmission (the datagram). Datagrams in the NESTAR system are always acknowledged (as discussed in the section on the data-link layer). One-way communications, however, are only moderately useful. A truly useful communication system requires a series of two-way communications. This type of virtual circuit operation is easily accomplished by sending datagrams back and forth between the two stations. Such action, of course, requires a certain amount of cooperation between the two stations.

One of the more interesting features of the Cluster/one system revolves around the carrier line. By leaving this line active inbetween packet transmissions a multiple
packet transmission can be accomplished without any interruption on the bus. While this does provide a small increase in performance (especially when the packets being transmitted are small], What's more important is that the data frames can be exchanged without interruption. This very important operation allows the construction of indivisible operations like the "set and test" instructions required by operating systems. Thus, semaphores can be efficiently implemented in the NESTAR network. Care must be taken, however, to make sure that two processes don't accidentally hog the bus. As was previously mentioned, the data-link software checks certain time-out counters to make sure that the current process isn't hogging the Clusterbus.

Network Transparency

One of the most important features of a hardware system like a network is that it must be totally transparent to the user. A networking system would be absolutely useless if you had to throw away all the software you've written and start over again to satisfy the network requirements. Such a horrible thought need not come true, due to the structure of the network itself, it is perfectly possible to treat the network as though all the devices attached to the network were, in fact, attached to the individual work station. This concept of virtual I/O makes the system completely transparent to the end user. He need not change the way he thinks about the file system or I/O. Almost all of the existing software will run unmodified on the network. And the modifications required to adapt existing single-user applications for a multipleuser environment are easy to make.

Some of the stations on the network (the servers) are designed to serve other stations (the clients). The printer server is a good example. This consists of an Apple II attached to a printer connected to the network. From the user's point of view he need only type PR1 (from BASIC) or OPEN(F, "PRINTER:"); (from Pascal) in order to access the printer. Everything else is handled by the network and patches made to the resident operating system. The only difference is that the printout comes from the printer server instead of the peripheral connected to slot one in the users Apple.

To the Apple user the most important feature the Cluster/one offers is that it forces very little change on current work habits. The system is easily learned and the software enhances productivity through its combined computational and communication facilities. In any corporate structure communication is essential. A group of widely separated computer systems doesn't enhance communication throughout the corporation. Unfortunately, although a timeshare system provides the communications capabilities response time is not very good. The Cluster/one network allows several microcomputer system to communicate with one another while maintaining the excellent response time microcomputer owners are used to and without obsoleting existing software.

MICRO

[^0]
Downloading BASIC on the PET • VIC-20 • C64

by
Kevin Stone
and
Andrew Cornwall

Tired of typing in a listing from a friend or having to travel to a friend's place to copy a program you would like? If so, continue reading. This article explains a simple method to send and receive BASIC programs (or machine language programs with a BASIC loader) over the telephone using a VIC, C-64 or PET. Equipment requirements are minimal, consisting of the microcomputer and compatible modems connected to the serial port of the VIC or C64 or the IEEE port of the PET. The program transferred is sent as a listing and automatically converted by the dynamic keyboard technique to tokenized (program| form by the receiving computer. After communication, the received program can be readily run, or saved to cassette or disk. Programs can be received from any other system.

Kevin Stone, VIC enthusiast, is a former Equipment Technician for CNCP Relecommunications, and is currently a Technical Support Representative for Victor (Canada) Ltd. Kevin resides in Halifax, Nova Scotia, Canada.

Andrew Cornwall, is a PET hobbiest with a wide range of interests in microcomputer applications. He is Secretary of the Nova Scotia Commodore Computer Users Group. He resides in Dartmouth, Nova Scotia, Canada.

Sending a Program

The first step in transferring a program is to coordinate the modems at the sending and receiving ends. As usual for any communication, one modem should be in the originate and the other in the answer mode [for the Bell 103 standard modem). Although it does not seem critical, we prefer setting both modems at full duplex, if there is a duplex option.

To send a program, load it into the transmitting computer's memory in the usual way \{either from tape or disk, or direct entry). Once telephone contact has been established between modems, the transmitting computer lists the program to its modem device. The procedure to do this is slightly different for the VIC or C64 and PET, and each is described separately below. Note that if only a portion of a program is to be transferred, the LIST command would contain the appropriate line number references (e.g. LIST 50-, LIST 50-100, etc.).

VIC or C64 Transmit

In direct mode, type the following lines and hit return after each. Serial port parameters are set by CHR\$(6) at 300 baud, no parity with 8 data bits, full duplex, 1 stop bit, and three line handshake. This will work with most modems, but some may require slightly different parameters.

OPEN 2,2,0,CHR\$(6)

 CMD 2LIST |with line range if required)
The program will now be sent over the modem as a full listing - not in tokenized form. When listing is finished, indicated by return of the screen cursor, wait about 15 seconds (or if the modem has a transmit light, until this light stops flickering) for the serial port buffer to empty to the modem, then type in:

PRINT2

CLOSE 2
This redirects normal output to the screen and closes the file.

PET Transmit

Enter the following lines in direct mode and hit return after each. The open statement assumes that the modem is device number 5, a common but not universal modem device number. Use the correct number for your system.

OPEN 5,5
CMD 5
LIST
When listing is finished and the screen cursor returns, enter:

```
PRINT5
CLOSE 5
```


Transmission Time

The time needed to send a program is governed by the modem baud rate. At 300 baud, transmission requires about 30 seconds per kilobyte of listing. Since a program listing can be as much as twice as "long" as its tokenized program form, a 4 K program in memory can take up to four minutes to transmit as a listing.

Receiving a Program

The receive method uses the dynamic keyboard append technique. While the routines for the VIC, C64 and PET are somewhat different, the general idea is the same. In each case a program listing is taken in and appended line-by-line to the small receive program. When the process is completed, the total program in memory consists of the receive routine plus the communicated program. The receive routine can be removed by using a toolkit delete command or simply by entering the line
numbers for the routine and hitting return after each.

As with any append process, the line numbers of the program being transmitted should not overlap those in the receive routine. If the line numbers do conflict, then simply renumber the program. The GOTO's must be fixed along with the renumbering. So long as overlapping line numbers is not a problem, we prefer using the receive routine with low line numbers, since it is technically faster (and easier to delete!).

Upon being run, the receive routine will ignore all transmitted characters (such as the word READY sent after the CMD command) until a numeric character with a value 1 to 9 is encountered. The routine presumes that the first numeric character is part of the initial line number of a listing, and commences to take in the remainder of the listing after a valid number is received.

At some point in the routines dynamic keyboarding takes over to carry-out the listing-to-program append process. This is visible as each communicated program line appears on top of the screen, a transfer line (ending with a GOTO statement) is printed under it, next READY flashes once, the screen clears and the sequence starts over. This will continue until the word READY, which is automatically sent at the end of the listing, is encountered. At this point the process will stop with a harmless OUT OF DATA ERROR.

VIC and C64 RECEIVE Programs

These routines take advantage of the serial port 256 byte input buffer, which makes the timing of the receive and append processes less critical, although on average the routine keeps up with the character input rate at 300 baud. Upon being run the routine clears the screen and waits for the listing to be
transmitted. When listing starts the action of dynamic keyboarding can be seen on the screen. The routine simultaneously receives and appends the incoming program listing. The buffer prevents data being lost during the dynamic keyboarding phase of the receive/append process.

Although the input buffer takes only 256 bytes, the actual serial port buffer occupies 512 bytes. The additional 256 bytes is for a transmit buffer, which is not used when receiving. After allowing for the buffers and receive routine itself, only about 2 K of memory is available on a basic VIC for the received program. The routine will work with any memory expansion configuration however, without modification to the routine.

Receive Program Detail

LINE 0: OPENs a file to the serial port. CHR\$(6) sets port parameters to 300 baud, no parity with 8 bits, full duplex, 1 stop bit, and 3 line handshake. These parameters are appropriate for most common modems. The screen is then cleared.
LINE 1: GETs a character via the modem and tests for receipt of first numeric character 1 through 9 .
LINE 2: PRINTs first received numeric character to screen.
LINE 3: GETs via the modem and PRINTs across the screen. End of program line is determined by receipt of a carriage return.
LINE 4: PRINTs dynamic keyboard transfer line to the screen. POKE 152,1 tells the VIC/C64 that one file remains open; GOTO 6 instructs the routine to restart at LINE 6 when the transfer line is executed in simulated direct mode.
LINE 5: Fills keyboard buffer locations 631 to 634 with a home cursor and three carriage returns; POKE 198,4 tells the VIC/C64 that the keyboard buffer contains four characters. After this the routine is for-

```
VIC
O OFEN 2, 2, O, CHR \(\{6\}\) :FRINT "m";
1 GET A IIF VAL (A \(\$=0\) THEN EOTO 1
2 PRINT A \(\$\);
3 GET \#2,A\$:PRINTA\$;
IF \(A \$\langle\subset C H R(13)\) THEN 3
4 PRINT:FRINT "POKE 152,1:GOTO 6"
5 POKE 631,19:FOKE 632,13:POKE 633,13:
POKE 634,13:POKE 199,4:END
6 FRINT "m";:GOTO 3
```

mally instructed to END. In fact, however, the routine continues as the characters in the keyboard buffer are executed (simulating direct mode operation) which enters (appends) the transmitted program line printed to the screen and activates the transfer line.
LINE 6: Clears the screen in preparation for the next received line. It then executes a GOTO 3 to continue the input.

Using Other Line Numbers

Since many programmers use the convention of starting at LINE 10, the above routine which resides from LINE 0 to LINE 6 should not normally be in the way of the program being transferred. If there is a conflict, then simply renumber the BASIC program, remembering to change the line numbers for the three GOTO commands in lines 1,4 and 6 .

PET Receive Program

The PET IEEE port does not have an input buffer. As a result, when simultaneous receive and conversion is attempted, incoming characters are missed during dynamic keyboarding. To overcome this problem, the receive and conversion operations are done separately. First, the listing is received and POKE'd verbatum into a protected area of memory above 2 K . When receiving is finished, sensed by a 64 millisecond time-out error, the listing is automatically PEEK'd from memory and dynamic keyboard appending commences.

Overall, the PET routine is slower than the VIC/C64 version, since it takes about an extra second per line to perform the separate appending process. Another disadvantage is that initial storage of the full listing requires as much as twice the memory as its counterpart in tokenized program form. Very large programs, however, can be communicated in stages, saved, and appended together afterwards.

When run, the PET routine clears the screen and prints the message "READY TO RECEIVE". When a listing is being received, the message "RECEIVING'" is printed. When the receiving is completed, i.e. a READY is received, the dynamic keyboarding takes over.

PET Receive Program Details

LINE 0: POKE 53,8 sets top of BASIC memory at 2 K to protect higher memory for character storage. It then OPENs a file for device number 5, which is presumed to be the modem No. 68 - January 1984

More speed, more memory workspace from the people who lifted the 64 K limit.

In 1981, we introduced our famous Saturn RAM card to boost the Apple's memory by 32 K . Now, there are 64 K and 128 K versions for added power.

Increased RAM lets you run bigger programs, and our VisiCalc ${ }^{\circledR}$ expansion software provides a dramatic expansion of workspace memory Also, the extra memory can work as a pseudo disk for instant access. (No more 20-second searches!) The Saturn RAM board is a super aid for advanced word processing, data base management, spread sheet, and accounting applications. And perfect with PASCAL, CP/M ${ }^{\oplus}$, and BASIC.

Use our easily installed cards in combination-and get a whopping 220K of VisiCalc workspace on the Apple IIe. Or sensational enhancements on Apple II, II + , Franklin, Basis and most Apple compatibles. We even have software that increases your Apple's memory in BASIC programming up to 4 megabytes!

This kind of performance requires sophisticated bank switching and supporting software that we originated, proved, and improved. Buy from the leader!

Let us help you expand your Apple's productivity. For information on our RAM boards and other Titan microcomputer products, see your computer dealer or contact: Titan Technologies, Inc., P.O. Box 8050, Ann Arbor, MI 48107; Telephone (313) 973-8422.
Sales and Marketing by The MARKETING RESOURCE GROUP, Costa Mesa, CA.

Apple is a registered trademark of Apple Computer, Inc. VisiCalc is a registered trademark of VisiCorp, Inc. CP/M is a registered trademark of Digital Research, Ine

device number. Variable \boldsymbol{J} is initialized to the 2 K boundary. The screen is cleared and the message 'READY TO RECEIVE' ${ }^{\prime}$ is printed.

LINE 1: GETs a character from the modem and tests the status variable ST for an error. If an error occurs, it is assumed to be a time-out error ($\mathbf{S T}=2$), and branches to the dynamic keyboard section of the program, starting at LINE 5.

LINE 2: Increments variable J and POKEs the PET-ASCII value of the latest character received into memory location J. Branches back to LINE 1 to get another character.
LINE 3: Tests for receipt of first numeric character to suppress READY and other non-BASIC lines.
LINE 4: PRINTs message "RECEIVING", after the first numeric character is received.
LINE 5: Restores the normal top of BASIC memory. Defines variable K as last value of J , and redefines J as 2 K . CLOSEs file number 5.
LINE 6: Clear the screen.
LINE 7: PEEKs listing from memory and PRINTs characters across the screen. End of program line determined by carriage return ($=13$).
LINE 8 PRINTs dynamic keyboard transfer line to the screen. The transfer line carries over the values of \mathbf{K} and \mathbf{J} and set the program to restart at LINE 6.
LINE 9: Fills keyboard buffer locations 623 to 626 with a 'home cursor' and three 'carriage returns'; the POKE 158,4 sets a variable to tell the PET that the keyboard buffer contains four characters. After this, the routine is formally instructed to END. In fact,
the routine continues as the characters in the keyboard buffer are executed, simulating direct mode operation to enter (append) the received program line printed to the screen and to activate the transfer line.

Reliability

Even though this method for transferring programs does not use any error detection, such as parity checking or checksum, we found it to be very reliable. Phone line glitches can cause difficulties, but these were rare during our development and testing of this technique. On one occasion someone dialed an extension telephone while a program was being transmitted. On another, the phone line mysteriously went dead for several seconds. Normal phone line background noise and crosstalk did not seem to cause any problems. In our "formal" testing of this procedure, an 8 K listing was communicated ten times over the period of several days. Each time the program was transferred successfully. Although our experience was on a local call basis, long distance telephone program communication should be feasible.

If a problems occurs when a VIC or C64 is receiving a program. the routine can be rerun to accept that portion of the program listing which was not received correctly. If a problem occurs while a PET is receiving, the correction procedure is more difficult. That portion of the program received in good condition can be saved and the routine rerun to take in the listing of the remainder. Afterwards, both parts can be appended together. It is probably more convenient to simply re-do the entire procedure from the beginning.

FEATURING PROGRAMS FOR THE VIC-20 AND THE COMMODORE 64.

BOUNTY HUNTER
 \$24.95*

An adventure in the Old West. Journey back with us into the days of Jessie James and Billy the Kid where the only form of justice was a loaded revolver and a hangman's noose. In this full-length text adventure, you play the role of Bounty Hunter, battling against ruthless outlaws, hostile Indians, wild animals and the elements of the wilderness with only your wits and your six gun. Average solving time: 20-30 hours. If you love adventures, this one is a real treat.
Available for COMMODORE 64 and the VIC-20 (with 8 K or 16 K expander). Available on TAPE or DISK Played with JOYSTICK

KONGO KONG \$24.95*

Climb ladders, avoid the barrels the crazy ape is rolling at you, and rescue the damsel. Commodore 64 version features 4 different screens!
Available for COMMODORE 64 and VIC-20 Available on TAPE or DISK. Played with JOYSTICK.

GRAVE ROBBERS

\$19.95*
Introducing the first GRAPHIC ADVENTURE ever available for the VIC- 20 or COMMODORE 64! With realistic audio-visual effects, you explore an old deserted graveyard and actually see the perils that lie beyond
Available for COMMODORE 64 and VIC-20 Available on TAPE or DISK Played with KEYBOARD.

CHOMPER MAN

\$24.95*
Don't let the bullies catch you as you gobble the goodies! This program has 8 screens and still fits in the standard memory
Available for COMMODORE 64 and VIC-20 Available on TAPE or DISK. Played with JOYSTICK or KEYBOARD.

\section*{THE • EARTH • WARRIOR • SERIES
 | METAMORPHOSIS | \$24. |
| :---: | :---: |
| You stumbled into the nest of the Cyglorx and find yourself fighting off robot tanks guarding the Cyglorx eggs. You think you have everything under control and then the eggs start hatching. Available for COMMODORE 64 and VIC-20. Available on TAPE or DISK Played with JOYSTICK | |
| CREATOR'S REVENGE | \$24.9 |

The creator assembled a massive army of robots and insects to take revenge on the earth. Destroy insects, get treasures, and get the neutron bomb deactivator. Battle robots and destroy the neutron bomb before it annihilates your city. Miss and you must face the mutants. Features 4 different screens.
Available for COMMODORE 64. Available on TAPE or DISK. Played with JOYSTICK.

LABYRINTH OF THE CREATOR \$24.95*

Journey into the most complex and dangerous fortress ever built by the creator. You will encounter deadly robots, skulls, lakes, avalanches, false creators, and a creature who roams 256 rooms relentlessly pursuing you
Available for COMMODORE 64. Available on TAPE or DISK. Played with JOYSTICK.

Illustrations: ElIZABETH HAUCK

* $\$ 3.00$ additional for disk.

Check your LOCAL DEALER or order directly.
ORDERING: We accept personal checks, money orders, VISA, and MasterCard. Charge orders please include number and expiration date.
OVERSEAS ORDER: Please use charge, or have check payable through a U.S. bank.
CANADIAN CUSTOMERS: If you wish to write a check drawn through a Canadian bank, please multiply the total order by 1.25 for proper conversion. Add $\$ 1.50$ postage and handling per order. PA residents please add 6% sales tax
VICTORY SOFTWARE INC.
7 Valley Brook Road
Paoli, Pennsylvania 19301
(215) 296-3787

Unexcelled communications power and compatibility, especially for professionals and serious computer users. Look us over; SuperTerm isn't just "another" terminal program. Like our famous Terminal-40, it's the one others will be judged by.

- EMULATION-Most popular terminal protocols: cursor addressing, clear, home, etc.
- EDITING-Full-screen editing of Receive Buffer
- UP/DOWNLOAD FORMATS-CBM, Xon-Xoff, ACK-NAK, CompuServe, etc.
- FLEXIBILTY - Select baud, duplex, parity, stopbits, etc. Even work off-line, then upload to system!
- DISPLAY MODES-40 column; 80/132 with side-scrolling
- FUNCTION KEYS-8 standard, 52 user-defined
- BUFFERS-Receive, Transmit, Program, and Screen
- PRINTING-Continuous printing with Smart ASCII interface and parallel printer; buffered printing otherwise
- DISK SUPPORT-Directory, Copy, Rename, Scratch

Options are selected by menus and EXEC file. Software on disk with special cartridge module. Compatible with CBM and HES Automodems; select ORIG/ANS mode, manual or autodial.

Write for the full story on SuperTerm; or, If you already want that difference, order todayl
Requires: Commodore 64 or VIC-20, disk drive or Datasette, and compatible modem. VIC version requires 16 K memory expansion. Please specify VIC or 64 when ordering.

Smart ASCII Plus . . . \$59 ${ }^{95}$

The only interface which supports streaming -sending characters simultaneously to the screen and printer - with SuperTerm.
Also great for use with your own programs or most application programs, i.e., word processors. Print modes: CBM Graphics (w/many dot-addr printers), TRANSLATE, DaisyTRANSLATE, CBM/True ASCII, and PIPELINE.
Complete with printer cable and manual. On disk or cassette.
VIC 20 and Commodore 64 are trademarks of Commodore Electronics, Lid.

MIDWEST
MICRO inc.

By Michael Keryan

DOSPLUS - adds new utility functions to a Commodore 64 by use of the RESTORE key.

This article shows how to use the RESTORE key (which generates a Non-Maskable Interrupt) to access up to 32 new utility routines. Seven new functions are implemented, including versatile printer support, easy color changes, and a two-key append function that will allow you to combine two or more BASIC programs. The framework is provided to allow 25 more functions to be added.

The Commodore 64 is definitely one of the best values in home computer hardware. It is roughly comparable to IBM's PCir at about onefourth the cost. Why is it so inexpensive? For one thing, Commodore decided to use the same BASIC-in-ROM interpreter that was used in the VIC-20 and older PET machines. The KERNAL ROM was updated for the 64 but no
new BASIC commands were added to support the 64's outstanding sound, bit-mapped graphics, sprites, etc. To use these features you are left with a myriad of PEEKs and POKEs that in no way can be described as user-friendly. For example, to change the background screen color to black, you must type: POKE 53 281,0. To get a printed listing of a program, you type: OPEN 4,4: CMD 4: LIST, then afterwards: PRINT \#4: CLOSE 4. An almost unbelievably complex series of POKES is necessary to program sprites and music.

A number of third-party software packages have attempted to solve some of these problems by adding new commands to BASIC, e.g. Ultra-BASIC 64. However, there is always some desirable function missing. For example, Ultra-BASIC 64 provides graphic screen dumps to the printer, but has no normal (alphanumeric) printer dump. Quite a few single-purpose machine language routines have appeared in magazines such as this recently which provide desirable add-on features. Invariably, these routines are placed either in the cassette buffer or at $\$ C 000$, and require the SYS function to operate.

The most convenient way to access handy functions involves assigning certain keys or sequence of keys to the new functions. The DOS WEDGE (provided on the demo disk that comes with Commodore's 1541 disk drive) uses this technique. For example, instead of typing LOAD" ${ }^{\prime}$ ", 8 then LIST, you type only $\$$ to get a directory listing. In general, however, assignment of special keys makes your programs run slower since the absence or presence of these key sequences must continually be checked.

The Powerful RESTORE Key

This article provides a framework to add a series of extensions for the Commodore 64 using the RESTORE key, followed by another key to define the function. Normally when you hit the RESTORE key, you use it in conjunction with the RUN/STOP key, most likely to regain control of your computer when a program has gone into never-never land. However, hitting only RESTORE appears to have no effect - a virtually worthless key.

Actually, RESTORE is probably the most powerful key on the keyboard, and is ideally suited to controlling the computer. It provides a Non-Maskable

Listing 1

Interrupt (NMI) request to the computer's CPU. No matter what the computer is doing at the time, it will stop and jump to a special machine language program that determines why the interrupt was requested, and takes appropriate action.

The Commodore 64 NMI program basically does two things:

1. It determines if the NMI request came from the RS/ 232 port or from the RESTORE key. If the RS/ 232
port generated it, the data transfer is handled.
2. If the RESTORE key generated the interrupt, the NMI program checks to see if the STOP key was also
pressed. If so, it jumps to initialization routines and then to a BASIC
warmstart. If the STOP key wasn't pressed, the program has no
noticeable effect.
So when you press the RESTORE key alone, nothing appears to happen, but actually the NMI program was executed. Commodorè makes it very easy to replace their NMI program with one of your own, since the NMI routine vectors through RAM locations \$0318-0319. Place the locations of your new NMI program in \$0318-0319 and you've gained complete control of the computer through the RESTORE key.

Using the Program

An assembler program (Listing 1) illustrates how the RESTORE key can be used to add 32 new functions to the Commodore 64. To gain access to these new routines, press the RESTORE key followed by a second key that identifies the function. Seven new routines are provided in the Listing; twenty-five more are possible. The seven functions are as follows:

> A to Append programs
> B to change the Background color
> C to change the Character color
> E to change the Edge color
> D to Dump the current screen to the printer
> P to turn on the Printer
> O to turn Off the printer.

Any other key pressed will return the computer to normal execution. Using the RUN/STOP and RESTORE keys together function as normally, except vectors are restored to the new routines.

Since this interrupt technique in-
No. 68 - January 1984
volves no character checking during normal program execution, it won't slow down your programs. An unexpected benefit of using the RESTORE key is that it also acts as a PAUSE or NO-SCROLL key. When a program listing or data is scrolling by too fast to read, just hit RESTORE - this will freeze everything until you hit another key. To resume the scroll, press RETURN. Also, the RESTORE functions can be stacked. Suppose you just stopped a scroll by using RESTORE, and you would like a printout of the current screen. Just hit RESTORE a second time, followed by D to generate the screen copy. Then hit RETURN to continue scrolling. This is an obvious advantage over using STOP, etc.

The series of machine language routines reside in upper memory, protected from BASIC, Reset, etc., at locations \$C800-CBFF. This is right next to the DOSWEDGE 5.1 utility program (\$CC00-CFFF). Therefore the new routines (called DOSPLUS) can be loaded and initialized along with the WEDGE. Each routine is now described briefly.

Non-Maskable Interrupt Routine

The new NMI routine duplicates many of the functions of the original NMI routine located in ROM at \$FE43. The CPU registers are saved and a check is made for an RS/232 interrupt. If the NMI request came from the RESTORE key, a check of the STOP key is made. If STOP was pressed at the same time, then three ROM initialization routines are run. A new initialization routine, INITNM, is then run (more on this later), followed by a warm start to BASIC.

Assuming you had only pressed the RESTORE key to access the new functions, the initializations and warm start are bypassed. The interrupt flag is cleared to allow keyboard entry. Then the program waits for a key to be pressed. The upper 3 bits of the ASCII value of the key are masked to zeroes, so only 32 unique keys are possible. Based on the value obtained above, pointers for the corresponding routines are set up into a JSR statement, then the JSR is taken, in which the new function is executed. After the subroutine is run, program flow returns to the old NMI routine in ROM which restores the registers and executes an RTI (return from interrupt) and normal program execution resumes.

NMI Initialization Routine

As mentioned above, a combination RUN/STOP and RESTORE restores the peripheral chips, colors, etc. back to their default values. This means we would lose control of the NMI routine because the KERNAL ROM addresses are reinstated in the indirect vectors in RAM. The new initialization routine therefore places our addresses back into the vectors for the NMI routine and the OUTPUT routine jused in the printer utilities).

The initialization routine also allows us to change the colors to new default values, in this case to black characters on a grey background. If you desire different default colors, change them here.

Lastly, the printer flag is reset to disable the printer, if it was on before the intialization was run.

New OUTPUT Routine

NEWOUT allows you to turn on the printer (device \#4) so that all output to the screen can go to both the screen and the printer. When this routine is activated, to get a program listing, just type LIST.

The NEWOUT routine first checks to see if the printer flag is off. Then it checks to see if the active device is \#8. Disk access is set up to kill the printer output to avoid possible contention problems on the serial bus.

The program then checks to see if the screen is in upper/graphics or lower/upper case. A file is then opened to device \#4 with a secondary address of 0 or 7 , depending on the case.

The character is sent to the printer, the file is closed, then the character is sent to the screen. Note that the printer file is opened and closed for each character. The printer output mode is turned on by RESTORE, P , and turned off by RESTORE, O.

Dump Screen to Printer

In addition to the printer on/off functions, a screen dump routine is provided. This is accessed by the RESTORE key followed by a D . The entire 40×25 screen is copied character by character to the printer. The printed output is indented to center the text on the paper and a dotted outline is drawn around the 40×25 matrix. As before, the printed output is made the same case as the screen.

The PDUMP routine opens and

closes a file similarly to the OUTPUT routine. A big difference is the transformation from screen code to ASCII code. Commodore does some very strange things to the printer and screen when a reverse character follows a quotation mark. It is very difficult to get an exact screen dump when this occurs. A quotation mark is replaced by an apostrophe on printed output, to allow reverse characters to be printed (if your printer or printer/interface will handle them). Examples of screen dumps are shown in Figure 1. In this case the printer used (NEC 8023/Tymac Connection Interface) does not provide reverse alphanumerics; a Commodore 1525 printer would have printed the directory header with reverse characters.

Change Screen Colors

A routine is provided to change the screen colors. This routine has three entry points. RESTORE, B changes the background color, RESTORE, E changes the edge color, and RESTORE, C changes the character color. Note that all characters on the screen will be changed, not just the characters following the cursor. When the colors are changed, their code number is incremented by one, from 0 to 15 , back to 0 , etc.

Once any one color has been changed, you can continue to step through the colors by repetitively pressing the same key (no need to hit RESTORE again). In addition, no matter which one you started with $(\mathrm{B}, \mathrm{E}$, or C$)$, you can change the others by pressing the corresponding key. Any other key will get you out of the color change mode.

Append

To append a program (normally consisting of subroutines or DATA statements) to another, first load the main program in the usual manner: LOAD"'PRG1", 8 . Then press RESTORE, A This raises the bottom of the BASIC program workspace to the end of the first program. The computer than prompts you to load the second program, e.g. LOAD' 'PRG2'', 8 and press RESTORE, A again. This time the bottom of the BASIC workspace is moved back down to the previous location. Your two programs are now one, which you should SAVE with a new name. You can continue to append more programs using the same technique. One word of caution - make sure that the ap-
pended programs have higher line numbers than the main programs since they are not merged - only appended.

A general purpose message printer routine is used above. To use this subroutine in your machine language routines, do a JSR to MESSAG followed by your message in ASCII characters. End the message table with a zero. After the message is printed, control will return to the next byte following the zero. In addition to normal text, cursor controls, color changes, etc. can be intermixed with text for special effects.

Entering the Program

The DOSPLUS routines currently start at $\$ \mathrm{C} 800$ and extend through \$CBFF. Space for more routines is available from $\$ \mathrm{C} 807-\mathrm{C} 8 \mathrm{FF}$ and from \$CB60-CBBE. Additional extensions can be assembled below $\$ \mathrm{C} 800$. The DOS WEDGE occupies $\$ C C 00-\mathrm{CFFF}$, so it is advantageous to load and initialize the DOS WEDGE and DOSPLUS at the same time.

There are several ways to get the program into your Commodore 64. If you have an Assembler, type in the Assembly code as shown in Listing 1. A compact BASIC loader is also provided; see Listing 2. Checksums are used to catch your typing errors, which will terminate the program. Note the change to line \#1260 required if you do not intend to run the BASIC loader with DOS 5.1 in memory. A third method is to send the author $\$ 10$ (US) for a disk containing the programs shown in Figure 1. (For foreign requests, please provide sufficient return postage). If you load and run the first program DOSPLUS, both the DOSWEDGE and the RESTORE routines will be loaded and initiated. Then type NEW and you're ready to go.

Seven new functions were added, but the tables will allow a total of 32 . Some possible additional functions include variable listing, single step, trace, autoline, hex-decimal converter, save \& swap screens (for animation), etc. Don't hesitate to write if you have a useful addition. Or better yet, write it up for all MICRO readers.
You may contact the author
Michael J. Keryan
713 Locust Drive
Tallmadge, Ohio 44278

Listing 2

```
                FRINT"[CLR] DOSPLUS LOADER":PRINT" WAIT-MLOADING"
DIM N(1 0): I=0
READ A⿻三丨: I=I+I: CS=0
X*=LEFT (A (,2): GOSUB 100: IF 2<1 THEN SYS 5120 0: END
BY=2: KS=2; X $=MID$(AS,3,4): GOSUB 100: LE=2
X$=MID#(A$,3,2): GOSUB1 00: KS=KS+Z: X$=MID$(A$,5,2): 60SUB 100: KS=KS+Z
FOR JxITDEY: X$=MID$(A$,5+J*2, 2): FRINT".";
G05U日 100: N(J)=2: CSaCS+Z; NEXTJ
X =MID*(A$,7+EY*2,4): GOSUB 100: IF Z<>CS+KS THEN PRINT"ERROR LINE #":I:
STOP
90 FOR J=1TOBY: FOKE LC+J-1,N(J ): NEXTJ:PRINT"*": GOTO 20
100 :
110 REM HEX TO DECIMAL
120 REM X: IS HEX NUMBER TO BE CONVERTED
13O REM 2 IS DECIMAL NUMEER CONUERTED
140 2=0
150 L=LEN(X$): FORK=1T0 L
160 Y=ASC(MID (X ( 
190 Z=2*16+Y-48+7*(Y)57)
200 NEXTK: RETURN
1000 DATA"18C900488A489848A97F8DODDDACODDD303520BCF620E1FFDODF200C46"
1010 DATA"18C91815FD20A3FD2018E52047C96CO2A05820E4FFC900FOF9291F0C7B"
1020 DATA"18C930AABDCOCB8D3EC9BDEOCE8D3FC920FFFF786848A84C72FEA90FE7"
1030 DATA"18C74800801803A9C98D1903A90C8020008D2100A900808602A9710A74"
1040 DATA",18C9608D2603A9C9802703EAEAEAA90080日BC96048ADEBC9C904D00EOE"
1050 DATA" IGC978.3DASBAC908FO376日8DBAC9488A489848A97E20C3FF20CAC90E1B"
1060 DATA"18C990A97E20BAFFA90020BDFF20COFFBOOBA27E20C9FFADBAC9200EEG"
1070 DATA"18C7A8CAF1A97E20C3FF20CLFF6日AB68AA684CCAF10D00A90485BAOEC2"
10日0 DATA"1GC9COGDBEC960A900日DEBC96OAD18D02902F004A007D002A000A20C9B"
1090 DATA"18C9D8046020CAC9A97D208AFFFA90020BDFF20C0FFB07AA27D20C90E65"
1100 DATA"1GC9FOFFA90085FDA90485FE2089CA207ECA2097CAA21920E1FFFOOF32"
1110 DATA"1BCAO8502075CA2091CA208DCAAOOOB1FDC9220002A927C9A2DOO20CB0"
1120 DATA"19CA20A9A78DBAC929809DAFCAF005A91220CAF1ADBAC9293FOEBAODFC"
11.30 DATA"18CA38C92CBAC9100209807002094020CAF1ADAFCAFOO5A99220CAOCOB"
1140 DATA"1GCA50F1CGCD28DOEE20A5CA981865FD85FD9002E6FECADO9E20970FEG"
1.50 DATA"IGLAG8CA207ECA2OCCFFA97020C3FF60AO10208DCA88DOFA6020750E3D"
1160 DATA"I8CAGOCAAO2C2091CA88DOFAA90DDOO6A920DO02A92E20CAF160200D1E"
1170 DATA"18CA9875CA2091CAA029208DCAB8DOFA208DCA2091CA2089CA60000D88"
1180 DATA" IGCABUA200F002A201FE20DO20E4FFC900FOF9C942FOFOC945FOESIOJD"
1190 DATA"18CAC日C943F00160A2FAFEFFD7FEF9DGFEF3D9FEEDDACADOFIEE9614D4"
1200 DATA"18CAE0021890054CE7CAA52C8D3FCBA52B8D40CBA52E852C38A52D0C9C"
1210 DATA"18CAF8E902852GEOO2C62CA92ARDE5CAA9CBGDE6CA2041CBOD4C4FODAD"
1220 DATA"18CB10414420504740322C2048495420524553544F52452C20410006BD"
1230 DATA"18CB280060AD.3FCB852CAD40CB8528A9E7日DESCAA9CA80E6CA6OFFOF1G"
1240 DATA"18CB4OFF6885FG6885FCA200E6FEDO02E6FCA1FBF00620D2FF18901055"
1250 DATA"08CB58FOA5FC48ASFB4860064["
1260 DATA"O7C8002047C9602000CCO34B"
1270 DATA"18CBEF60日FE4B4CDDABOBFBFBFBFBFBFBFBFBFC4BCBFBFBFBFBFBF1361"
1280 DATA"18CBD%GFBFBFBFBFEFEFBFBFCBCACACAC9CACBCBCBCBCBCBCBCBCB1450"
1290 DATA"1LCBEFC9C9CBCBCBC日CBCBC日CBCBCBCBCBCBCBCBOF42"
1300 DATA"OO"
1500:
1510 REM IF DOS WEDGE WILL NOT 日E RUN WITH THIS PROGRAM, REPLACE LINE 1260
    WITH:
1520 REM 1260 DATA"04C8002047C960025C"
```


9" Data Monitor

- 80 Columns $\times 24$ lines
- Green text display
- East to read - no eye strain
- Up front brightness control
- High resolution graphics
- Quick start - no preheating
- Regulated power supply
- Attractive metal cabinet
- UL and FCC approved

- 15 Day Free Trial - 90 Day Immediate Replacement Warranty

9" Screen - Green Text Display
$\$ 79.00$
12" Screen - Green Text Display (anti-reflective screen) \$ 99.00 12" Screen - Amber Text Display (anti-reflective screen) \$119.00 14" Screen - Color Monitor (national brand)

Display Monitors From Sanyo

With the need for computing power growing every day, Sanyo has stepped in to meet the demand with a whole new line of low cost, high quality data monitors. Designed for commercial and personal computer use. All models come with an array of features, including upfront brightness and contrast controls. The capacity 5×7 dot characters as the input is 24 lines of characters with up to 80 characters per line.
Equally important, all are built with Sanyo's commitment to technological excellence. In the world of Audio/Video, Sanyo is synonymous with reliability and performance. And Sanyo quality is reflected in our reputation. Unlike some suppliers, Sanyo designs, manufactures and tests virtually all the parts that go into our products, from cameras to stereos. That's an assurance not everybody can give you!

[^1]

- 15 Day Free Trial - 180 Day Immediate Replacement Warranty

80 COLUMN THERMAL PRINTER - 60 CPS

Bi-directional, dot matrix, prints $81 / 2^{\prime \prime}$ letter size paper, full 80 columns, high resolution graphics, dot bit addressable, special symbols and true decenders! (Centronics parallel interface)
80 COLUMN TRACTOR-FRICTION PRINTER - 80 CPS
Bi-directional, dot matrix, impact, prints single sheets, continuous feed paper, adjustable columns, 40 to 132 characters! Roll paper adapter $\$ 32.95$. (Serial or Centronics parallel interface)
PREMIUM QUALITY 10" CARRIAGE T/F PRINTER - 120 CPS
Bi-directional, impact, 9×9 dot matrix with double strike for 18×18 dot matrix. High resolution bit image (120×144 dot matrix) underlining back spacing, left and right margin settings, true lower decenders, with super and sub scripts. Prints standard, italic, block graphics, special characters, plus 24 of user definable characters and much more!! Prints single sheets, continuous feed and roll paper! (Centronics paraliel interface)
PREMIUM QUALITY 15½" CARRIAGE PRINTER - 120 CPS Has all the features of the Premium Quality $10^{\prime \prime}$ Carriage T/F Printer above plus a $151 / 2^{\prime \prime}$ carriage and more powerful electronic components to handle large business forms! (Centronics parallel interface)
HIGH SPEED PREMIUM QUALITY T/F
10" PRINTER - 160 CPS
Save printing time with these plus features: 160 CPS speed, 100% duty cycle, 8 K buffer diverse character fonts special symbols and true decenders, vertical and horizontal tabs. This is Red Hot Efficiency!!! (Serial or Centronics parallet interface)
HIGH SPEED PREMIUM QUALITY
T/F 15 $1 / 2$ " PRINTER - 160 CPS
$\$ 799$
$\$ 599$

Has all the features of the $10^{\prime \prime}$ Carriage high speed printer plus a $151 / 2^{\prime \prime}$ carriage and more powerful electronics to handle larger business forms! (Serial or Centronics parallel interface)
PARALLEL PRINTER INTERFACES: (IN STOCK)

- For VIC-20 and COMMODORE 64 \$49.00
- For all APPLE COMPUTERS $\$ 69.00$
- For ATARI 400 and 800 COMPUTERS $\$ 79.00$

NOTE: Other printer interfaces are available at computer stores!

[^2]
FLOPPY DISKS SALE *\$1.19 ea. Economy Model or Cadillac Quality

 LORAN: We have the lowest prices! LORAN:
*ECONOMY DISKS

Good quality $5 \frac{1}{4} 4^{\prime \prime}$ single sided single density with hub rings.

Bulk Pac	100 Qty.	$\$ 1.19 \mathrm{ea}$.	Total Price	$\$ 119.00$
	10 Qty.	1.39 ea.	Total Price	13.90

CADILLAC QUALITY

- Each disk certified - Free replacement lifetime warranty - Automatic dust remover

For those who want cadillac quality we have the Loran Floppy Disk. Used by professionals because they can rely on Loran Disks to store important data and programs without fear of loss! Each Loran disk is 100% certified (an exclusive process) plus each disk carries an exclusive FREE REPLACEMENT LIFETIME WARRANTY. With Loran disks you can have the peace of mind without the frustration of program loss after hours spent in program development.

100\% CERTIFICATION TEST

Some floppy disk manufacturers only sample test on a batch basis the disks they sell, and then claim they are certified. Each Loran disk is individually checked so you will never experience data or program loss during your lifetime!

FREE REPLACEMENT LIFETIME WARRANTY

We are so sure of Loran Disks that we give you a free replacement warranty against failure to perform due to faulty materials or workmanship for as long as you own your Loran disk.

AUTOMATIC DUST REMOVER

Just like a record needle, disk drive heads must travel hundreds of miles over disk surfaces. Unlike other floppy disks the Loran smooth surface finish saves disk drive head wear during the life of the disk. (A rough surface will grind your disk drive head like sandpaper). The lint free automatic CLEANING LINER makes sure the disk-killers (dust \& dirt) are being constantly cleaned while the disk is being operated. PLUS the Loran Disk has the highest probability rate of any other disk in the industry for storing and retaining data without loss for the life of the disk.

Loran is definitely the Cadillac disk in the world

Just to prove it even further, we are offering these super LOW INTRODUCTORY PRICES
List $\$ 4.99$ ea. INTRODUCTORY SALE PRICE $\$ 2.99$ ea. (Box of 10 only) Total price $\$ 29.90$ $\$ 3.33$ ea. (3 quantity) Total price $\$ 9.99$
All disks come with hub rings and sleeves in an attractive package.

DISK DRIVE CLEANER ${ }^{\text {s } 19.95 ~}$

Everyone needs a disk drive doctor

FACTS

- 60% of all drive downtime is directly related to poorly maintained drives.
- Drives should be cleaned each week regardless of use.
- Drives are sensitive to smoke, dust and all micro particles.
- Systematic operator performed maintenance is the best way of ensuring error free use of your computer system.
The Cheetah disk drive cleaner can be used with single or double sided $51 /{ }^{\prime \prime}$ " disk drives. The Cheetah is an easy to use fast method of maintaining efficient floppy diskette drive operation.
The Cheetah cleaner comes with 2 disks and is packed in a protective plastic folder to prevent contamination. List \$29.95 / Sale \$19.95

[^3]

 Generating Characters for the EPSON FX80 on a Commodore 64

by Robert M. Tripp

Basic Printing Concepts

The evolution of plain paper printers has been toward less expensive units that do more. Those who have entered the microcomputer revolution lately may not realize that it was only five or six years ago that a used Teletype ${ }^{(t m)}$ at over $\$ 500$ was a hot item. And all it could do was produce numbers, punctuation and upper case alphabetics - at 10 character per second with a lot of noise and it was not very transportable! Printers have come a long way since then and are getting better all the time. One of the most useful features to come along recently is the ability for the user to define his own character set. Until this capability was added, the user had three choices if he needed characters that the printer did not support:

1. Find some way to live within the constraints of the supported character set, such as using [CLR] to stand for the inverse heart shape that Commodore computers use as the displayable representation of the clear screen function.
2. Print the character information in a graphics mode.
3. Purchase a custom printer with the appropriate character set - normally limiting the user to the printer manufactured by the microcomputer company.
Each alternatives has a major drawback. The first requires that special programs be written to do the conversion from the microcomputer display character code to the alphanumeric string that will represent it, and results in a printout that does not represent the microcomputer display very well. The second requires a program to convert the character oriented information into a graphic form, and due to the fact that information has to be transmitted for every bit on the line, is quite slow. The third is an added expense and may result in a printer with limited capabilities and few, if any, of the more sophisticated printer features.

A very neat solution has been provided recently by the general purpose printer manufacturers. Many now include the ability for the user to define some or all of the character set in the printer's RAM. While the number of characters that may be so defined, the matrix for generating the characters, and the exact protocol for defin-
ing the characters varies from printer to printer, the basic concepts are the same. MICRO, as a microcomputer user, probably has more need for the user defineable characters than the average user since we deal so often with printed material and we deal with such a variety of microcomputers. We investigated the available printers and selected the Epson FX80 since it has allows all 256 characters to be user defined. Many of the other printers with UDCs currently available only permit a portion of the character set to be redefined and some do not support copying the existing ROM set into RAM to form the basis for the UDC. These two factors may not be significant to you, and other printers may be better for your particular requirements. Most of the material in this article will be applicable to printers in general.

Custom Character Sets

The GRAPHICS issue of MICRO (\#66, November 1983) discussed character oriented graphic characters and provided methods for generating character sets on the Commodore 64, VIC 20 and Atari microcomputers. The examples used in the articles were, for the most part, generated on our FX80. A few of the possible uses for the UDC include:

1. Graphic characters that replicate those of the micro's display.
2. Custom graphic characters such as those used for line drawings, macro characters, special symbols, and so forth.
3. Alphabets for foreign languages, computer readable codes such as bar codes, optical scanner characters, special fonts such as the magnetic ink characters found on checks, etc.
4. Character segments that may be used to form 'super sized' printouts for displays such as calendars, printed material for the visually handicaped, an so on.

Generation of User Defineable Characters

The FX80 manual has a very good discussion of the details of generating user defineable characters. This presentation

```
    1 REM "FXPCG GENERATOR"
    10 PRINT"MGENERATING CHARACTERS"
    15 CLF:GOSUB 5000:
    REM GENERATE CHARACTERS
    20 GOSUB 5100: REM DEFINE EQUATES
    30 GOSUE 4000: REM SETUP SCREEN
    40 GOSUB 1000:GOTO 2000: REM EDIT
1000 REM FX CHARACTER DISPLAY
1010 EY=FX+13*CH:PRINT"S";
1020 FOR J=7 TO O STEP -1:K=2^J
1030 FOF L=1 T0 11 STEP 2:I=BY+L
1040 IF PEEK(I) AND K THEN 1100
1050 IF FEEK(I-1) AND K THEN 1000
1060 IF PEEK(I+1) AND K THEN 1110
1070 PRINT ".";:GOTO 1200
1080 IF PEEK(I +1) AND K THEN 1120
1090 PRINT CHR$(LH)::GOTO 1200
1100 FRINT CHR $(CL);:GOTO 1200
1110 PRINT CHR$(RH);:GOTO 1200
1120 PRINT CHR$(LR);
1200 NEXT
1210 PRINT:NEXT
1220 RETURN
1400 REM OUTFUT FX CHARACTERS TO MEMORY
1410 BY=FX+13*CH
1420 F[IR L=0 T0 12:POKE(BY+L),0:NEXT
1430 FOR L=1 TO 11 STEP 2:I=BY+L:A=0:B=0:
    XX=INT(L/2)
1440 FOR J=7 TO 0 STEP - 1:K=2^J
1450 X=FEEK(OG+XX)
1460 IF X=CX THEN A=A OR K
1470 IF X=RX OR X=DX THEN B=B OR K
1480 XX=XX +RW:NEXT
1490 POKE(I),A:FOKE(I +1), B:NEXT
1500 RETURN
2000 REM EDIT
2010 H=0:V=0:CP=87
2015 PRINT"S]J]I]I]J]CHAR #";CH;"|l S";
2020 PO=0G+V*RW+H:X=PEEK(PO)
2022 Y = PEEK (PO+1):BY=FX+CH*11+V
2025 POKE PO,CP
2030 GET T $:IF T ="" THEN 2030
2040 IF T $="\varepsilon" THEN CP=225: GOTO 2025
2050 IF T$="^" THEN CP=87: GOTO 2025
2060 IF T 
2070 IF T }$=CR$\mathrm{ THEN H=H-1:GOTO 2500
2080 IF T $=CD THEN V=V +1:GOTO 2500
2100 IF T$=CU THEN V=V-1:GOTO 2500
2110 IF T $=RT THEN H=0:V=V +1:G0T0 2530
2115 IF T $=F1$ THEN POKE PO,X:GOTO 7000
2120 IF T $=F2$ THEN POKE FO,X:GOTO 7100
2125 IF T $=F3$ THEN POKE PO,X:G0T0 7400
2130 IF T&=F4$ THEN POKE PO,X:GOTO 7300
21.35 IF T $=F5$ THEN POKE PO,X:GOTO 6200
2140 IF T $=F6* THEN POKE FO,X:GOTO 6000
2145 IF T }$=F7$\mathrm{ THEN POKE PO,X:GOTO 2600
2150 IF T $=HM$ THEN POKE PO,X:GOTO 2010
2155 IF T&="+" THEN 2200
2160 IF T$=".." THEN 2300
2165 IF T$<>CS$ THEN 2030
```

2170 FOR I $=0$ T0 12
2175 POKE FX+13*CH+I, 0: NEXT
2180 GOSUB 1000:GOTO 2010
2200 REM + SERVICE
2205 IF $C P=225$ THEN 2400
2210 IF $X=P D$ OR $X=C X$ OR $X=B X$ THEN 2280
2220 IF $X=L X$ OR $X=D X$ THEN 2290
2240 X $=$ CX
2260 IF $Y=L X$ THEN $Y=B X: G O T O 2290$
2270 IF $Y=D X$ THEN $Y=R X: G O T 02290$
2275 GOTO 2290
$2280 \mathrm{X}=\mathrm{CX}$
$2290 \mathrm{H}=\mathrm{H}+1:$ GOTO 2500
2300 REM - SERVICE
2310 IF $X=F D$ OR $X=C X$ OR $X=B X$ THEN 2350
2320 IF $X=L X$ THEN 2290
2330 IF $X=D X$ THEN $X=L X: G O T 02260$
2340 X=BX:GOTO 2260
$2350 X=B X: G O T O 2290$
2400 IF $X=F D \quad O R \quad X=B X$ THEN $X=R X: G O T O 2410$
2402 IF $X=C X$ OR $X=R X$ THEN $X=R X: G O T O 2410$
2404 IF $Y=P D$ DR $Y=B X$ THEN $Y=L X$
2406 IF $Y=C X \quad O R \quad Y=L X$ THEN $Y=L X$
240 X $\mathrm{X}=\mathrm{DX}: \operatorname{GOTO} 2290$
2410 IF $Y=L X$ OR $Y=R X \quad$ THEN $Y=D X$
2415 IF $Y=P D \quad O R \quad Y=B X \quad$ THEN $Y=L X: G O T O 2290$
2420 IF $Y=C X$ OR $Y=L X$ THEN $Y=L X: G 0 T 02290$
2450 IF $Y=P D \quad O R \quad Y=B X$ THEN $Y=L X: G 0 T 02290$
2455 IF $Y=L X \quad O R \quad Y=F X \quad$ THEN $Y=D X$
2499 GOTO 2290
2500 IF $H<0$ THEN $H=10 ; \mathrm{V}=\mathrm{V}-1$
2510 IF $H>5$ THEN $H=0: V=V+1$
2520 IF $V<0$ THEN $V=5$
2530 IF $V>7$ THEN $V=00$
2540 POKE $\mathrm{PO}, \mathrm{X}: \mathrm{POKE}(P O+1), Y$
2550 GOTO 2020
2600 REM REVERSE .- AS BEST YOU CAN !
$2610 \times X=0 G$
2620 FOR I $=0$ TO 7
26.30 FOR J=0 T0 $5: X J=X X+J$

2640 A=PEEK (XJ):IF $A=P D$ THEN $A=B X$
2650 IF $A=B X$ THEN $A=C X: G O T O 2700$
2660 IF $A=C X \quad O R \quad A=D X \quad$ THEN $A=B X: G 0 T 0 \quad 2700$
2670 IF $A=R X$ THEN 2720
2675 IF $P R=B X$ THEN $A=C X: G O T O 2700$
2680 IF $\operatorname{PEEK}(X J+1)=\mathrm{FX}$ THEN $A=R X:$ GOTO 2700
$2690 \mathrm{~A}=\mathrm{BX}$
2700 PR=A: POKE (XJ), A:NEXT
2710 PR=0: $X X=X X+R W: N E X T: G O T O 2010$
2720 IF $F R=D X \quad$ OR $P R=R X \quad$ THEN $A=L X$: GOTD 2700
$2730 \mathrm{~A}=\mathrm{BX}:$ GOTO 2700
2900 IF $P R=D X \quad O R \quad P R=R X \quad$ THEN $A=L X:$ GOTO 2700
3000 PRINT"S"; QQ \ddagger; L \ddagger;"]"; :INPUT CH
$3010 \mathrm{CH}=\mathrm{CHAND} 255$
3020 PRINT"S"; QQ\$;LL\$;59\$
3030 RETURN
4000 PRINT"E"; QQ*;
$"+O N /-O F F / \varepsilon$ HALF / ^ FULL"

```
4010 PRINT"QFI READ CHAR #
4020 FRINT"F}2 WRITE CHAR #"
4030 PRINT"F3 READ NEXT"
4040 PRINT"F4 WRITE CURRENT/READ NEXT"
4050 PRINT"F5 DISK LOAD"
4060 PRINT"FG DISK SAVE"
4070 PRINT"F7 REVERSE CHARACTER"
4080 RETURN
5000 PRINT CHR$(142)
5010 POKE 52,48:POKE 56,48
5020 POKE 56334,PEEK(56334) AND 254
5030 POKE 1,PEEK(1) AND 251
5040 FOR I=0 TO 2047
5045 POKE I +12288,PEEK(I+53248):NEXT
5050 XX=12288+91*8
5060 FOR I=0 TO 39
5065 READ A:POKE (XX+I),A:NEXT
5070 POKE 1,PEEK(1) OR 4
5080 POKE 56334,PEEK(56334) OR 1
5090 POKE 53272,PEEK(53272) AND 240. OR 12
5095 RETURN
5100 POKE 650,128:RT$=CHR$(13)
5110 OG=1024:RW=40:FX=256*56
5120 POKE 53281,1:POKE 53280,2
5130 PD=ASC("."):PRINT""#";
5140 BL=123:CL=124:LH=125:LR=126:RH=127
5150 BX=91:CX=92:LX=93:DX=94:RX=95
```



```
5165 F4$="&":F5$="||";F6$="目":F7$="||"
5170 CL $="]":CR$="|":CU$="`"
5175 CD = "包":HM$="S":C5$="岕"
5180 ZL$=RT$+"'`J]J]J]JJ]J]J]J",
5185 2S$="
5190 2R $= "||||||||||||||||||||||||||||||||"
5195 EL $= ZL$+2S$+2R $:EU$=CU$+EL$
5196 QQ $="QQQQQQQQQQ"
5197 LL$="JJJJ]J]JJJJJJJJ]J]"
5198 RETURN
6000 REM SAVE TO DISK
6010 PRINT"SQQQQQQQQQQQQQQQQQ";
6020 8$="":PRINT EL$;:INPUT "FILE"; 8$
6025 IF B$="" THEN PRINT CU$;:GOTO 6160
6030 C %="(10:"+B$+",S,W"
6040 OPEN 3,8,8,C$
6050 PRINT EU*;:INPUT "FROM CHAR #";FC%
6060 PRINT EU$;:INPUT " TO CHAR #";TC%
607D IF TC%<FC% THEN 6050
6080 PRINT#3,FC%;RT$;TC%;RT$;
6090 FOR I=FC% TO TC%
6100 PRINT#3,139;RT$;:REM ATTRIBUTE
6110 II=FX+I*13
6120 FOR J=II+1 T0 II+11
6125 PRINT#3,PEEK(J);RT$;:NEXT J
6130 NEXTI:CLOSE3
6140 PRINT EU$;日$;" SAVED";:GOTO 2010
6200 REM LOAD FROM DISK
6210 PRINT"SQQQQQQQQQQQQQQQQ";
6220 B$="":PRINT EL推;INPUT "FILE"; B $
6225 IF B$="" THEN PRINT CU$;:GOTD 6320
6230 C$="手:"+B$+",S,R"
```

```
6240. DPEN 3,日,日,C$
6250 INPUT#3,FC%,TC%
6260 FOR I=FC% TO TC%
6270 II=FX+I*13:INPUT#3,C%:POKE II,0
6280 FOR J=1 TO 11
6285 INPUT#3,C%:POKE(II+J),C%:NEXT J
6290 POKE(II+12), O:NEXT I
6295 CLOSE 3:GOTO 2010
6300 PRINT"`";'EL$;日$;" LOADED";:GOTO 2010
```



```
6602 PRINT "
6604 FRINT "I||||||||||||||||||||||||||||||||";
6610 RETURN
7000 REM READ SPECIFIED CHARACTER
7010 PRINT HM$;:GOSUB 7200
7020 IF CC%<256 THEN CH=CC%
7030 CH=CC%:GOSUB 1000:GOTO 2010
7100 REM WRITE SPECIFIED CHARACTER
7110 PRINT HM$;CD$;:GOSUB 7200
7120 IF CC%<256 THEN CH=CC%
7130 GOSUB 1400:GOTO 2010
7200 PRINT QQ$;"Q";
```



```
7220 PRINT CH;"Il |IIIIIII|III";
7230 CC%=CH:INPUT CC%
7235 IF CC%<0 OR CC%>255 THEN CC%=256
7240 RETURN
7300 REM WRITE CURENT/READ NEXT
7310 GOSUB 1400
7400 REM READ NEXT
7410 CH=((CH+1) AND 255)
7420 GOSUB 1000:GOTO 2010
9000 DATA 0,0,0,0,0,0,0,0
9010 DATA 0,60,126,126,126,126,60,0
9020 DATA 0,192,224,224,224,224,192,0
9030 DATA 0,195,231,231,231,231,195,0
9040 DATA 0,3,7,7,7,7,3,0
```

is designed to provide you enough information to under－ stand the operation of the FX80 without the manual，and， to provided actual programs that make the whole process easier．The FX80 allows the user to define any number of characters，up to 256 characters in the standard RAM area， more with additional RAM．First consider each character in the FX80 to be defined in a matrix that is eight dots high by six dots wide．This is similar to the character definition on the various microcomputers，although many of them are defined as eight by eight．The capital letter A would be defined as：

The alphanumerics and punctuation will normally be a five by seven character within the six by eight matrix， providing at least one blank column and one blank row between individual characters．Simple enough．But，the FX80 people decided to get even better looking characters
by allowing dots to be placed half way between the six columns. This means that there are not six but eleven possible horizontal positions for dots. The capital letter A could be defined as:

Note that the dots in the top half of the letter A overlap vertically. The dots on the top line and third line are offset one-half space from the dots on the second and fourth through seventh lines. This extra resolution in the horizontal direction, eleven positions in the normal space of six, provides very nice looking character, but does severely complicate the character generation process. There is an important restriction to be aware of. The dots must not overlap. If there is a dot on one of the eleven positions, then there may not be a dot on the next position.

The FX80 manual discusses how to define your character on graph paper, and then to manually convert each of the eleven columns into an 8-bit byte. The top most row is considered to have a value of 128 decimal or 80 hex. The next row is 64 decimal, 40 hex, and so forth. The value of each dot that is to be printed in any column is summed with all other dot values in the column to produce the column value. There is one 8 -bit value for each column, and eleven columns. In addition to these eleven bytes of information to define each character, you must

SOPHISTICATED TELE-COMMUNICATION IS HERE THE COMMUNICATOR for 4.0 Commodore Computers
 JIM STRASMA'S REVIEW: "the best terminal package i've seen yet" By April 1 (maybe sooner) It Will Be Even Better SPEEDS UP TO 9600 BAUD XON - XOFF
 TRUE CTRL KEY (we do our own keyboard scan)

THE HARDWARE - A printed circuit board; easily installed in the CBM. It uses no CBM connectors; gives a serial port with true RS232C standard.
THE SOFTWARE -

- Emulates the ADDS Regent 100, ADM 31 and/or the TeleVideo 950.1 Or choose the VT100 model for use with DEC and VAX computers.
- Runs coresident with BASIC programs; lets BASIC programs and program on host computer communicate to develop really sophisticated communication and controt capabilities.
- The prugram is on ROM at either address; no disk loading required. Uses only 512 bytes of RAM; will retocate itseff around any other machine language program at top of memory.
- Will upload and download and run BASIC programs. With BASIC program will upload and downtoad standard data files. 100 page manual gives program listing for BASIC programs.
Excellent text editor designed to work with THE COMMUNICATOR
THE COMMUNICATOR $\$ 200$
Text Editor $\$ 40$
1200 baud modems beginning at low. low $\$ 385$, and even less when purchased with THE COMMUNICATOR
AMPLIFY, INC.
2325 Macbride, lowa City, lowa 52240 319-337-8378
1 trademarks Adds Regent, Inc., Lear Liegler, Inc., Televideo Systems, Inc.
provide an attribute byte. The attribute byte determines if the character is to be shifted down one dot position to provide a lower case descender, which column the character starts in and which column it ends in. This is provided to permit proportional spacing. In this article, we assume that all characters are full width and print in the upper eight dot positions.

If you sit down and start plotting out characters on graph paper, then assigning each dot its value, summing the individual dot values, and so forth, that it is a somewhat tedious, repetitive job. The type of job that computers are supposed to be good at! So, why not have the computer do the work! The FX80 GENERATOR is given in Listing 1. It is based on the interactive Programmable Character Generator by Loren Wright that appeared in the GRAPHICS issue. Several important additions have been made by me. First, the program automatically defines a few new characters for use on the Commodore 64. The FX80 can printed dots between the main columns of each character; the Commodore can not. To make a realistic display of the character being generated, three new characters are defined. They are the left half of a dot, the right half of a dot, and the left and right halves joined 'back-to-back'. This permits a dot to be generated that appears to be half way between the normal columns of the Commodore display. Other enhancements include Save to Disk, Load from Disk, and Reverse Character.

The operation of the program is quite straight-forward. After the three special half dots are generated, the display is initialized. A character is generated in the upper left corner of the display. The + key is used to write a dot; the - key to erase a dot; the up arrow to select the main columns; and, the British pound sign to select the dots on the intermediate columns. The HOME, CLR and the cursor controls can be used for their normal functions. Function Keys 1 through 7 each have a specific function associated with them. These functions are listed on the display.
F1 READ CHAR \# converts eleven bytes of data in memory accessable by the character number into a dot display in the upper left comer.
F2 WRITE CHAR \# converts the dot pattern in the working space into eleven bytes of data in memory accessable by the character F3 READ NEXT reads the next character without requiring a number to be specified.
F4 WRITE CURRENT/READ NEXT combines a write with a read to make entering of a number of consecutive characters more automatic.
F4 DISK LOAD loads a file specified by name from the disk to make it available for editing
F6 DISK SAVE saves the character information that is in memory on the disk.
F7 REVERSE CHARACTER changes the dots on the main columns to blanks and the blanks to dots. Note that this will only work well with patterns that have no dots between the main columns. This is because the while the FX80 can print half spaces, it can not print half dots. Think about it. It is not as simple as it seems.

Program Description

The subroutine at 5000 copies the standard ROM character set into RAM. Five new characters are defined by reading the DATA statements at 9000 and poking them into the character RAM. These five characters are a blank, a solid dot, the left half of a dot, the left and right halves of a dot joined 'back-to-back', and the right half of a dot. They are
used to provided the intermediate dots for the even col－ umns in the working display．The Character Dot－Data Base Address at 53272 is set to point at the RAM character set．

The subroutine at $\mathbf{5 1 0 0}$ defines a number of variables and strings．

Subroutine $\mathbf{4 0 0 0}$ displays the basic editing screen．
Subroutine 1000 examines the data in memory for a specified FX80 character．Each character is represented by 13 consecutive memory locations．To make the testing easier，the first and last location are always zero．The other eleven locations contain the bit pattern for the FX80 eight－ by－eleven dot matrix．Since the intermediate dots，those on the even numbered columns，are generated by a com－ bination of display patterns－the specially defined patterns generated above－the prior，current and next memory loca－ tions all must be tested to determine the correct pattern to display．

Subroutine 1400 reverses the process and converts the display pattern into the correct memory pattern．

The major editing service starts at 2000．It displays the current character number and sets the cursor shape．There are two cursor shapes used in this program．The first is an open circle that represents the odd columns．It is selected by the Vertical Arrow located next to the RESTORE key． When it is selected，you can write or erase in the six odd columns．The second cursor is a half solid vertical bar that represents the even columns．It is selected by the British Pound Sign key，and when selected allows you to write or erase in the five even columns．Cursor up，down，left and right；carriage return，home and clear work area are sup－ ported．A dot is written by positioning the cursor in the desired location，including selecting the correct full or half cursor，and pressing the + key．A dot is erased by pressing the－key．

The trickiest part of the program is probably in lines 2200 through 2550 that determine what character（s） should be displayed as a function of the current mode－odd or even column，the command to write or erase，and the information that is currently in the work area．For exam－ ple，if you are going to write a dot in an even column，you must actually write a right half dot in one character posi－ tion and a left half dot in the next．But what if the next position，the odd column，already contains a full dot？Or， even more difficult，what if it contains the right half for
the next even column？A number of tests are made to determine how the display must be changed．

Lines 600 to $\mathbf{2 8 0 0}$ are a limited REVERSE function．It is easy to reverse a full dot by making it a space，or reverse a space by making it a full dot．The problem comes in rever－ sing a half dot．While the FX80 can print a half space by proper positioning of the printing mechanism，it can not print a half dot！The print head is only capable of printing a full dot．So，it is not possible to accurately reverse patterns that contain any half dots．The routine does the best it can．When done reversing，it accepts a new character number．

The routine at $\mathbf{6 0 0 0}$ to $\mathbf{6 1 4 0}$ saves the FX80 character information on disk．It is called by the $\mathbf{F 6}$ key．It requests a filename，the number of the first character to be saved and the number of the last character to be saved．It outputs an arbitrary attribute byte of 139 which defines each character as the upper eight printing positions on the FX80 with the full character width．The eleven bytes of data that define the information for the eleven columns on the FX80 are then output．

The routine at $\mathbf{6 2 0 0}$ to $\mathbf{6 3 0 0}$ loads the FX80 character information from the disk．It is called by the F5 key．

Lines $\mathbf{7 0 0 0}$ to $\mathbf{7 4 2 0}$ support the other basic editing functions that include：Read a specified character，Write a specified character，Read the next character，and，Write the current character number and Read the next．

Generating Data Statements

Now that a new character set for the FX80 has been generated using the FX80 Character Generator，and is saved on disk as a sequential disk file，the question arises： How do I get it over to the FX80？The obvious answer is to first convert the sequential file to BASIC DATA statements and then add a driver program that would output the character information，plus any special command information required by the FX80．Step one， generating the BASIC DATA statements from the sequential file is simply handled by the FXPCG DATAMAKER routine．Load and run the FXPCG DATAMAKER．It will ask for the FIRST BASIC LINE NO： Input a line number，say 10010 ．It will then ask for the FILENAME：．Input the filename that you used to save the character information．The file will be loaded from disk．

```
I REM FXFCG DATAMAKER - R.M.TRIPF 1983
2 INPUT "MFIRST BASIC LINE NO: ";LN
3 FOKE52,48:POKE56,48:C=256*56:INPUT "FILENAME: ";日$:C$="CO:"+日$+",S,R"
4 OPEN 3, 8,8,C$:FRINT"LOADING":INPUT#3,F%,T%:FOR I=0 TO T%-F%:X=C +I*12
5 FOR J=0 T0 11:INPUT#3,C%:POKE (X+J), C%:NEXT J:NEXT I:E=X+11:ELOSE 3
6 FRINT "m";MID$(STR离(LN),2);" DATA";F%;CHR$(44);T%:LN=LN+10:K=1:GOT0 8
7 PRINT "m";:K=0
8 FOR I=K TO 6:PRINT MID$(STR$(LN),2);" DATA ";:FOR J=0 T0 11
7 PRINT MID$(STR (PEEK{C)),2);CHR$(44);:C=C+1:IF C\E THEN PRINT 256;:I=6:J=11
10 NEXT J:PRINT CHR $(20):LN=LN+10
1 NEXT I:PRINT"LN=";LN;":C=";C;":E=";E
12 IF C>E THEN PRINT"QQGOTO 14":GOTO 16
3 FRINT "QQGOTO 7":GOTO 16
14 PRINT "芯";FORI=1TOQ:PRINT I:NEXT:PRINT "GOTO 15":GOTO 16
15 PRINT "M"::FORI=9TO16:PRINT I:NEXT
16 POKE 631,19:FOR [=1 T0 9:POKE 631+1,13:NEXT:POKE 198,10:END
```

You will then see DATA statements appear on the display, the display be cleared, and more DATA statements appearing, until all of the characters have been converted to DATA statements. Then the numbers 1 to 16 will appear on the screen. At this point, the program is erasing itself! You are left with a BASIC program that is nothing but DATA statement containing your character set.

Now all that is left is to add a short BASIC program in front of these DATA statements that will send initialization information to the FX80. The Character Set for FX80 shows the additional DATA that is needed to set up a typical FX80 application. Lines $\mathbf{1 0 0 0 1}$ to $\mathbf{1 0 0 0 9}$ are the sequences that must be sent to the FX80 to perform the specified operations. See the FX80 manual for additional details.

All that you need to add is a driver program that will open up your communication channel, read and output the information contained in the DATA statements, and you are on your way. The FX80 will now contain the characters you defined.

Using the New Characters

You will need to write a short conversion program to output the correct codes to the FX80 to access the characters you have generated. The SCREEN DUMP program is an example that was used with my character set. It can be appended to an existing screen editing program by listing it on the display, loading you editor, and then pressing returns on each line of the display. Then add a command to your editor to go to the $\mathbf{3 0 0 0 0}$ subroutine, and you can dump your screen directly to the

```
30000 REM SCREEN DUMP
30001 OPEN 3,4
30002 FOR Y=0 TO 24
30003 FOR X=0 T0 39
30004 A=PEEK(1024+Y*40+X)
30005 IF A<32 THEN A=A+64:GOTD 30010
30006 IF A>63 AND A<128 THEN A=A+64:
    GOTO 30010
30007 IF A)127 AND A(192 THEN A=A-128;
        GOTO 30010
30010 PRINT#S, CHAR#(A)
30011 NEXT:PRINT#3,CHR#(13)
30012 NEXT:PRINT#3,CHR$(13)
30013 [LOSE 3:RETURN
```

FX80. Your conversions will vary as a function of how you have defined the special characters on the FX80.

What's Next

A scheme to intercept the output of a BASIC LIST command and convert it will be presented next month. A complete PARALLEL driver will be described that includes the cabling information and software to permit you to use the FX80 with your Commodore without requiring a serial interface! This can save you quite a bit of money since the serial interface on the FX80 is an option, the parallel interface is standard. While it does take a bit of effort to get the FX80 working with the special characters for your computer, it does provide you with a virtually unlimited printing capability.

MICRO

HOW MUCH LONGER WILL YOU LAST?

How long can you endure? When will it end?... We're not talking about a new shoot'em up game for the Commodore 64, but Commodore's own disk operating system! Commodore made a great computer in the 64 but left its disk operating system out in the cold. If you've been waiting for a true disk operating system, here it is!... If you've been waiting for a great BASIC language enhancement that will let you utilize the Commodore's many special features, here it is! What is it? It's grafDOS, the great new utility from Xylex Software that allows the user to actually become friendly with the Commodore 64! grafDOS includes commands like DELETE, RENAME, CATALOG, RUN, etc. The BASIC allows you to do high resolution and low resolution graphics, sound, sprite program, plus much, much more for a total of 40 commands! Plus included in every package is MINIMON, a powerful machine language monitor that includes another 20 commands for use in machine language. The disk also comes with sample programs and demos including a great music generator! And all this together is only $\$ 49.95$! How could you have lasted this long without it?

DON'T WAIT ANY LONGER!

Make your programming easier! grafDOS is available now at your local dealer or:

Commodore Reviews

Product Name: Interpod
Equip. req'd: Price:
Manufacturer:
\section*{U.S. Distributors:}
Commodore VIC or 64 $\$ 150.00$
Oxford Computer Systems Ltd. Hensington Road, Woodstock
Oxford OX7 1TR England
SJB Distributors
10520 Plano Rd., \#110
Dallas, TX 75238
(214) 343-1328
Limbic Systems
1056 Elwell Ct.
Palo Alto, CA 94303
(415) 964-8788

Description: This is an IEEE-488 and RS-232 interface for the VIC-20 and C64. It is guaranteed compatible with all programs. Though it lacks the BASIC 4 and monitor of RTC's C64-LINK, INTERPOD is a most important new product. Highly recommended.

Pluses: Unlike other IEEE interfaces we've tested, it connects to the serial bus, like Commodore accessories. Thus, there is no need to relocate it and no problem with programs that use up internal memory. It easily links a VIC-20 or C64 to a whole network of PET/CBM or other IEEE-488 devices plus an RS-232 printer, and it works fine with most DOS-protected programs. When the computer addresses a device, INTERPOD sees if a device on the serial bus answers. If not, the call is transferred to the IEEE bus to see if any device answers there. If not, and the device number is 4 , it tries the RS-232 port. It ignores the IEEE device when a serial device is on and can arrange another address for the RS-232 device.

Minuses: INTERPOD goes off and sulks if you turn the computer off and on without also turning off INTERPOD. A multi-plug switch solves this. When rechecking IEEE disk status, INTERPOD adds garbage after the valid information; this hangs some data-handling programs. The cure, says the fairly adequate manual, is to send a "clear" command to INTERPOD's command channel before each new access - easy in your own programs, but impossible in protected commerical ones.

Skill level required: None to use the IEEE port. The usual high skill is needed to set up the RS- 232 port.

Product Name:	DIARY 64
Equip. req'd:	Commodore 64 Computer, 1541 Disk drive or Dattasette; Printer Optional
Price:	\$39.95
Manufacturer:	Computer Marketing Services
	300 W. Marlton Pike
	Cherry Hill, NJ 08002
	[609) 795-9480

Description: DIARY 64 is a cartridge based file management program. Files are set up in blocks which may consist of up to 10 lines of 27 characters each. When the files are printed out, only the first four lines of each block is printed. This allows printing names and addresses or like information. The files may be saved on either tape or disk.

Pluses: The program is quite easy to use. The manual explains the functions quite well. Files may be set up using a date rather than a block number and the file information can be accessed by data as you would use a diary. This seems to be the origin of the program's name. Blocks may be added, changed or deleted as necessary. There is a search function allowing a particular record to be found by block number, data, or "key" character.

Minuses: The blocks cannot be sorted nor can you set up and print out all files at one time. Each file record requires the user to press the 'up-arrow' and the return keys to obtain a print out.

Documentation: The eight page manual contains all the information needed to use the program effectively. It is clearly written and easy to understand.

Skill level required: Beginning level user.

Reviewer: Richard E. Devore

Commodore to Smart Modem

by John Kelty

Adapted for Commodore by Phil Daley

260 REM HAYES TO RUN AT 300 BAUD.
270 REM
280 REM THE HAYES WILL OFERATE
290 REM LOCALLY AT HIGHER RATES
300 REM EUT NO HIGHEK THAN 300
310 REM WHILE ON LINE.
320 REM
330 REM SEE YOUR USER'S MANUAL
340 REM FROM HAYES FOR DETAILS.
350 REM
360 REM ***************************
370 REM
380 REM OPEN MODEM LINE FIRST THING
390 OPEN $2,2,3$, CHR $\$(6)$
420 DIM M (5), SN $\ddagger(9)$
430 REM ***************************
510 PRINT"m ${ }^{*}$ **** SMART MODEM *****"
520 PRINT" EY: KELTY ENGINEERING"
530 FRINT"
**********************"
540 PRINT:
PRINT"CONNECT CABLES TO MODEM,"
545 PRINT"COMPUTER AND PHONE CDMPANY."
550 PRINT:PRINT:
PRINT" (EREAK AND LIST THIS
PROGRAM TO"
555 PRINT"SEE CABLE DETAILS)."
560 PRINT:PRINT: INPUT"FRESS ENTER WHEN READY";A
570 PRINT"MQ"
580 PRINT*2,"AT I": $^{\prime \prime}$ CLEAR MODEM

600 REM MENU
$610 \mathrm{M}(1)=" A U T O$ DIALING"
$620 \mathrm{M} \ddagger(2)=$ "AUTO ANSWERING"
630 FOR SE1 TO 2
640 PRINTS;M\$(S)
650 NEXT S
660 PRINT:PRINT: PRINT"SELECT ONE OF THE AEOVE"
670 GET A\$:IF A\$=""THEN670
680 ON VAL (A\$) GOSUB 700,1310
690 GOTO 510
700 REM $* ~$
710 REM AUTO DIALING ROUTINE
720 REM $* ~$
730 REM
740 PRINT" $70 " M \$(1)$
750 PRINT:PRINT:
PRINT"1 DIAL A SAVED NUMEER"
760 PRINT"2 DIAL A NEW NUMBER"
770 GET A $\$$:IFA $\$=1 "$ THEN770
780 ONVAL (A\$) GOT0800,980
790 GOTOT40
800 REM ***********************
$810 \mathrm{HM}=2$: HOW MANY NUMBERS
820 REM TO CHANGE THIS LIST, MAKE HM=HOW
g25 REM MANY * YOU WANT TO LIST (MAX OF 91.

日30 REM THEN INSERT LINES SIMILAR TO THOSE
835 REM BELOW WITH YOUR NUMBERS AND NAMES．
840 PRINT＂MNUMBERS YOU CAN EASILY CALL＂：PRINT
850 SN $\$$（1）
$={ }^{\prime \prime} 1 \quad X X X-X X X X$
A FRIEND

860 SN（2）
$=" 2 \quad x \times X-X X X-X X X X \quad$ A $B B S$
＂
870 FOR K＝1 TO HM
880 PRINT SN $\$(K)$
890 NEXT
900 PRINT：
PRINT＂SELECT ONE OF THE ABOVE＂
910 PRINT＂（BREAK AND LIST TO EDIT
THESE NUMBERS）．＂
920 GET A\＄：IF A\＄＂＂THEN920
$930 \mathrm{NB}=\mathrm{VAL}(\mathrm{A} \$)$
940 IF（NB〈1）OR（NB〉HM）THEN 800
$950 \mathrm{P}=\mathrm{M} \mid \mathrm{D} \$(5 \mathrm{~N} \$(\mathrm{NB}), 5,16)$
960 GOSUB1090
970 RETURN
980 REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
990 PRINT：PRINT＂DIALING A NEW NUMBER＂
1000 PRINT：
PRINT＂TYPE IN THE PHONE NUMBER THAT＂
1005 PRINT＂YOU WISH TO EALL．＂
1010 PRINT＂EXAMPLES：＂
1020 PRINT＂1－800－XXX－XXXX LONG DISTANCE
1030 PRINT＂112－800－XXX－XXXX FROM
LINCOLN
1040 PRINT＂XXX－XXXX LOCAL
CALL
1050 PRINT
1060 INPUT＂TYPE DESIRED NUMBER＂；P\＄
1070 GOSUB 1090
1080 RETURN
1090 REM $* ~$
1100 REM NUMBER KNOWN AT THIS POINT
1110 REM READY TO DIAL
1120 PRINT\＃2，＂AT FO D＂P\＄
1160 REM $* ~$
1170 REM YOU CAN RUN ANY TERMINAL
1180 REM PACKAGE THAT YOU WISH BY
1190 REM EDITING THE NEXT LINES．
1200 REM LOAD＂MODCOMM．PRG＂， 8
1220 REM RUN
1230 PRINT＂MQYOU NEED TO USE YOUR OWN＂
1240 PRINT＂TERMINAL PACKAGE AT THIS POINT＂
1250 PRINT＂（SUCH AS VIDEOTEX AND OTHERS）．＂
1300 GOTO 2040
1310 REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
1320 REM AUTO ANSWER ROUTINE
1330 REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

```
1340 REM
1350 PRINT"MQ"M$(2)
1360 PRINT
1370 REM MENU
1380 AN$(1)="DO NOT ANSWER"
1390 AN$(2)="ANSWER IMMEDIATELY"
1400 AN$(3)="ANSWER AFTER XX RINGS"
1410 FOR SA=1 TO 3
1420 PRINTSA;AN$(SA)
1430 NEXT SA
1440 PRINT:PRINT:
    PRINT"SELECT ONE OF THE ABOVE"
1450 GET A$:IF A$=""THEN 1450
1460 PRINT"MQ "M$(2)
1470 ON VAL(\overline{A}$) GOSUB 1490,1560,1720
1480 GOTO 1310
1 4 9 0 \text { REM *************************}
1500 REM DO NOT ANSWER
1510 PRINT:
    PRINT" ***"AN$(1)"***"
1520 PRINT:
    PRINT"THE SMART MODEM ANSWER
    FUNCTION"
1530 PRINT"IS DISABLED."
1540 PRINT#2, "AT SO=0"
1550 GOTO 2040
1560 REM *************************
1570 REM ANSWER IMMEDIATELY
1580 PRINT" ***"AN$(2)"***"
1590 PRINT"THE SMART MODEM WILL.
    ANSWER ALL"
1600 PRINT"CALLS IMMEDIATELY."
1610 PRINT"USE THIS T0 TRANSFER CALLS
    THAT"
1620 PRINT"ARE ALREADY IN PROGRESS
    BETWEEN"
1630 PRINT"TWO INDIVIDUALS TO
    COMMUNICATION"
1640 PRINT"BETWEEN THEIR COMPUTERS."
1650 GOSUG 1870
1660 PRINT#2,"AT"DP$"A"
1670 PRINT"AT THIS POINT YOU NEED TO
        RUN"
1680 PRINT"OR EXEC YOUR OWN RECEIVER"
1690 PRINT"PROGRAM TO INTERPRET THE"
1700 PRINT"INCOMING CALL."
1710 GOTO2040
1720 REM ********************
1730 REM ANSWER AFTER XX RINGS
1740 PRINT:PRINT" ***"AN$(3)"***"
1750 PRINT:
    PRINT"THE SMART MODEM WILL
    ANSWER ALL"
1760 PRINT"CALLS AFTER THE NUMBER OF
        RINGS"
1770 PRINT"YOU SELECT (FROM 1 TO 255
    RINGS)"
1780 PRINT
1790 INPUT"HOW MANY RINGS (L TO 255)";
        RG
1800 RG=INT(RG)
1g10 IF RG<1 OR RG>255 THEN 1790
```

```
1820 F'RINT:
    PRINT"THE PHONE WILL 日E
    ANSWERED"
1830 PRINT"AFTER"RG"RINGS."
1840 GOSUB 1870
1850 PRINT#2,"AT"DP$"S0="RG
1860 PRINT:GOTO 1670
1870 REM *************************
1880 REM FULL OR HALF DUPLEX
1890 FRINT:
    PRINT"DO YOU WANT FULL OR HALF
    DUPLEX?"
1900 PRINT"(IF YOU DO NOT KNOW,
    TRY HALF)."
1910 PRINT:PRINT"1 FULL DUPLEX"
1920 PRINT"2 HALF DUPLEX"
1930 GET A$:IF A$=""THEN1930
1940 ON VAL(A$) GOTD 1950,1990
1950 REM FULL DUPLEX
1960 DP$="F1"
1970 PRINT:
    PRINT"FULL DUPLEX SELECTED."
1980 GOTO 2020
1990 REM HALF DUPLEX
2000 DP $="FO"
2010 PRINT:
    PRINT"HALF DUPLEX SELECTED."
2020 PRINI
2030 FIETURN
2040 REM *************************
2050 REM EXIT ROUTINE
```

```
2080 PRINT:
    PRINT"THIS PROGRAM HAS ENDED."
3000 REM THIS PROGRAM SENDS AND
    RECEIVES
3010 REM TRUE ASCII DATA
3020 DIMF%(255), T%(255)
3200 FORJ=32T064:T%(J) =J:NEXT
3210 T%(13)=13:T%(20)=8:RV=18:CT=0
3220 FORJ=65T090:K=J+32:T%(J) =K:NEXT
3230 FORJ=91T095:T%(J)=J:NEXT
3240 FOR J=193 TO 21日:K=J-128:T%(J)=K:
    NEXT
3250 T%{146)=16:T%(!33)=16
3260 FOR J=0 TO 255
3270 K=T%(J)
3280 IF K<>OTHEN F%(K)=J:F%(K+12日)=J
3290 NEXT
3300 PRINT " "CHR$(147)
3310 GET#2,A$
3320 IF A$=""OR ST<>0 THEN 3.360
3330 PRINT " "CHR$(157):
    CHR$(F%(ASC (A$)));
3340 IF F%(ASC(A$))=34 THEN POKE212,0
3350 GOTD 3310
3360 PRINTCHR$(RV)" "CHR$(157):
CHR$(146)::GET A$
3370 IF A$\\""THEN PRINT#2,
    CHR$(T%(ASC(A$)));
3380 CT=CT+1
3390 IF CT=8 THEN CT=0:RV=164-FV
3400 GOTO 3310
NCRO
```


NOT ONLY ANOTHER TECHNOLOGICAL BREAKTHROUGH

 BUT ALSO EASY TO USE AND TO INSTALLModems are the most important device used to link two products together through ordinary telephone limes at miles apart．The INCOMM STARCOM．a 300． 1200 bps Auto Dial．Auto Answer． Auto Log On modem was introduced to
tink two high speed devires logethe with having absolutely NO knowledge of computers or communications in general．Anybody can install and operate the STARCOM Family in a few minutes．
－STARCOM is a 300：1200 bps Auto Dial：Auto Log On／Auto Answer Modem OSCOM is a 300／1200 bps Auto Dial／Auto Log OniAuto Answer with Osborne （TM）Computer Software（included）modem． COMSOFT is a communication software package OEM MODEM BOARD is also available for custom installation．

SENDFOR
FULL LINE CATALOG
of peripherals in cluding Modems Muxes．Switches and Breaker Boxes

DEALER INQUIRIES INVITED
 （312）459－8881 or 1－800－323－2666

NCOMM

115 N．WOLF RD．WHEELING，IL 60090

THE

/AICRO Commodore Compass

by Loren Wright

High Resolution on the Commodore 64

Many C-64 users don't even know that their machines have high-resolution graphics, let alone know how to use them! There is no mention in the User's Guide, and very little in the Programmer's Reference Guide. In this column I'll explain a little about these modes, and provide a couple machine-language utilities to make high-resolution programming easier.

There are actually two bit-map modes. One is a twocolor mode (hereafter called hi-res bit-map mode) that provides resolution of 320 by 200 pixels. The other is a fourcolor mode (hereafter called multicolor bit-map mode) providing resolution of 160 by 200 pixels. Each mode uses an 8 K bit-map area and the 1 K color memory.

In hi-res bit-map mode, each bit in bit-map memory corresponds to a pixel on the screen. If the bit is a 1 , then the corresponding pixel appears in the foreground color; if the bit is a 0 , then the corresponding pixel appears in the background color. Screen memory is used to select the foreground and background colors for each 8 -pixel by 8 -pixel area (the area normally occupied by a character). Bit-map memory is arranged to take advantage of this square-by-square color selection capability. The first eight bytes in bit-map memory represent the pixels of an 8 -by- 8 square at the top left corner. The next eight bytes of represent the 8 -by- 8 square immediately to the right of that. This arrangement makes it a little more difficult to calculate a given bit, but the reward is being able to use many more than two colors on a high-resolution screen.

In multicolor bit-map mode, the pixels are twice as wide and it takes two bits to specify the source of the color 00 - background \#0, 01 - high four bits of screen memory location, 10 - low four bits of screen memory location, 11 - color memory location. Each byte contains four bit-pairs, each of which corresponds to a doublewidth pixel. The bytes are arranged in the same way as in hi-res bit-map mode, and the little squares are the same size (8 rows of 4 double-width pixels). Each little square may have only four colors in it, but there may be many more than four colors on the whole screen at once.

Listing 1 is a hi-res bit-map routine to calculate the proper byte BY, byte contents BQ, and bit BI, as well as the proper position PO for control of colors. X and Y are the input and represent the x - and y -coordinates of the hires pixel. 0,0 is the coordinate of the upper-left cormer. BA is the starting address of bit-map memory, and OG is the screen memory start address. These vary with the memory configuration you choose.

Listing 2 is a similar routine, only for multicolor bitmap mode. X and Y are the input. Remember X ranges from 0 to 159 because of the double-width pixels. The output is the byte $B Y$, byte contents $B Q$, bit pair $B P$, and position PO.

To use listing 1 , perform the following set-up once at the beginning of your program:

$$
\begin{aligned}
& 40 \text { DIM P\%(7),M\%(7):FORI =0TO7: P\%(I) }=2 \text { NI: } \\
& \text { M } \%=255-\mathrm{P} \%(\mathrm{I}): \text { NEXTI }
\end{aligned}
$$

The following calling sequence may now be used:

```
110GOSUB 4000: REM X=0 TO 319, Y=0 TO 199
120POKE BY,BQ AND M%(BI) OR P%(BI)
```

To use listing 2, perform the following set-up once at the beginning of your program:

```
4 0 \text { DIM P\%(3),M \%(3):FORI = 0TO3: P\%(I)=4^I:}
    M % = 255-P%(I):NEXTI
```

You may now use the following calling sequence:

```
110GOSUB 4000: REM X=0 TO 159, Y=0 TO 199
120POKE BY,BQ AND M %(BP) OR P%(BP)
```


How to Set Up Bit Map Modes

The procedure shown in the Programmer's Reference Guide uses bit-map memory at $\$ 2000$ (8192). This is adequate for experimenting with short programs, but the 6 K left for BASIC is not adequate for a program of any significance. Listing 3 is a routine to set up bit-map memory at $\$ 6000$ (24576). This uses bank 1 for the VIC II, so the screen must be moved to $\$ 5 \mathrm{C} 00$ (23552). The result is over 20 K for your BASIC program. Listing 4 is a routine to restore the multicolor bit-map mode. Listing 5 is a routine to restore the normal screen. If you are using either listing 3 or listing 4, the first lines of your program must be:

10 POKE 52,92: POKE 56,92: POKE 55,0: CLR
 $20 \mathrm{BA}=24576$: $\mathrm{OG}=23552: \mathrm{MY}=199: \mathrm{MX}=319$:
 REM MX $=159$ for multicolor

Line 10 prevents the BASIC program from writing over bit-map or screen memory. It must be the very first line in your program. Because the CLR instruction clears the stack, as well as the variables, this statement cannot be in-
cluded in a subroutine．Line 20 sets up constants used in the subroutines of listings 1 and 2 ．

Machine－Language Bit－Map Utilities

Listing 6 contains a group of machine－language utilities in the form of BASIC DATA statements．Space does not permit listing it in source format．Also included in the listing is a routine to POKE the utilities into the cassette buffer and subroutines to call each routine．

Important note：The routines must be POKEd back into the cassette buffer after using either the cassette or disk or LOAD or SAVE operations．

Miscellaneous Tidbits

If your program should happen to stop while in one of the bit－map modes，it may appear that you have lost con－ trol of your computer．One way to get out is to press STOP and RESTORE together．Another is to type GOSUB 8100 and press RETURN．Even though you can＇t see any characters on the screen，the command will be accepted． Keep in mind that there is only one location for color memory and it applies to whatever screen is in use at the moment．Therefore，if you are in multicolor bit－map mode and you switch to a normal character screen，then any col－ or changes you make here will also affect Color 3 on the bit－map screen．One way to avoid this is to keep Color 3 the same for the entire screen．Another is to copy color memory to a 1 K buffer at $\$ 5800$ ．This area must be pro－ tected from BASIC by POKEing 88 instead of 92 in line 10. When you return to the bit－map screen，copy the contents of the buffer back into color memory．

Terry Peterson＇s BSAVE procedure（September＇83

MICRO／may be used to SAVE bit－map and screen memory to tape or disk．To load，LOAD＂name＂，dv， 1 ，where dv is the device number．To SAVE color memory to tape，you must first copy it to a location below $\$ 8000$（32768），such as a buffer at $\$ 5800$ ．

Finally，SAVE your program often．There is a lot to keep track of，and therefore a lot that can go wrong．

MCRO

```
List 1: Calculate byte and bit in hilres bit-map mode.
4E15 FEM CHL_LILFTE E'r'TE & FINEL
4E1E FH=IHTध'r'E):CO=IHT&SO:LH=
```



```
4E20 FOO=4E稆:4+CO
4ESE E'r'=EA+FW%SEG+COBE+LH
4048 EQ=FEEK&E'T'?
4ESG FEETIIRH
```

List 2: Calculate byte and blt palr in multi-color bit-map mode.
4019 FEM EFLEULATE HEW FIKEL GHTH

464E EG=FEEド © $\mathrm{E}^{\prime} \mathrm{T}^{\prime}$)
4050 FG=46FFW+EO
4 GEG FETLIFH

L／st 3：Set up hl－res blt－map mode．
EEGETEEMSET LIF HI－FES IH EFHIE 1

 BEESFEMICH GFF \＆HI－FES OH BQ10FQFE SGSTB，FEEFCSESGOOFZ

 BEEEFETUFH

List 4：Set up multi－color blt－map mode．

BELEFEHSET LFF HI－FES IH EFHF 1 BEE1 FEMHI－FES SCFEEH 末GEEET－FTFFF BGEZFEMSGFEEH MEMIF＇T 末SCEG－丰SFFF BEDSFEMMCH \＆HI－FES DH

 B6EEFETUFR

```
BIEG FEM FESTORE HORMAL GLFEEH
B110 FOFE SESTS.FEEKCSESTSOOFO
```



```
E140 FOKE S32ES,FEEK&5SEES%HPNQES
B15E FOHE 5%2TQ.FEEK&S327Q%HFDESG
B16G FETILFH
```

```
List 6: Machine-language routines, Installation and calling routines.
```



```
32GE FOFES4E,G:S'SG15:FETUF:H:FEM OLEFF GOLOFE
364 FOHES40,E:S'SESS:FETLRH:FEH DLEFF EOLOF S
SSELE FEH FEACI IH MIL FOLITIHE
ES1E%%=E4E:I=E
85%E FEF[''T'r': IF'т'т'=-1THEHES4E
```



```
854G RETUFIH
```



```
    133,254.265
```



```
    76,3
```



```
    20s
```


AICRO

FOR APPLE II PLUS, FRANKLIN, APPLE IIe Font Down Loader

Expand the capacity of your printer hundreds of times

Load custom fonts into your Apple ${ }^{\circledR}$ Matrix Printer, Prowritertm 8510A, OK1 ${ }^{\oplus}$ Microline 92, 93, 84 Step II, and Epson ${ }^{\circledR}$ FX and use them with virtually every word processor to turn your printer into a custom typesetter. After the fonts are loaded, they will stay in your printer until it's turned off. A font editor is also provided to allow you to create your own graphics, text, foreign language letters, math and electronics symbols to load into your printer. On-Disk (Specify Printer)
${ }^{5} 39^{\circ 0}$
New improved versions with drivers for Grappler, Pkaso, Wizard and most other intelligent parallel boards.

Atari To Smartmodem

By John Kelty Adapted for Atari by Phil Daley

This is an adaptation of my program for the Color Computer. The hardware requirements are the Hayes Smart Modem and the Atari 850 commmunications interface. This program was specifically written with the serial line connected to port 1 of the serial port (the standard port for communications). This fantastic modem can be programmed from Atari BASIC.

The interface cable is a standard Atari communications cable - 9-pin D-connector to DB-25. If you want to wire your own cable, here are the connections:

Atari Connector	DB-25
1	20
2	8
3	2
4	3
5	7
6	6
7	4
8	5
9	11

You need 9-conductor cable and I have used as long as about 25 feet without any problems. It is convenient
however, to have the Smartmodem near your computer setup, then you can hear the dialup and the send and receive carrier tones when you begin communicating. There are many programming options you can choose with the Hayes Smartmodem, and these are extremely well documented in the excellent Owner's Manual. |In case you have not guessed, I consider the Hayes Smartmodem my best computing purchase to date!].

The BASIC program is menu driven for ease of operation. If you BREAK and then RUN the program again, the Smartmodem functions are cleared ("AT Z" is sent to the modem). To write to the Hayes, you must access the port in concurrent I/O mode (XIO 40) and then use normal PRINT\# commands. Now you can talk to your modem just like it was a printer with PRINT\#5, "your modem command". To get back into the normal Atari mode use CLOSE\#5. It is important to read back the information sent by the Hayes modem or else the program will hang, and pressing reset is the only way to recover. Also, the only way to terminate the program is by pressing reset.

Now you can use a communications
package such as AMODEM or a similar program to communicate with bulletin boards or data bases．The program in－ cludes a short subroutine to emulate a dumb terminal if you don＇t have a com－ munications package yet．

I know little to nothing of amateur radio operations，but with a few lines of

BASIC and possibly some hardware， the Hayes Smartmodem can be made to send morse code．Auxiliary relay con－ tacts are provided in the modem to key the transmitter automatically．It can－ not however，be made to directly receive morse code．Diagrams describ－ ing the modem to radio interface are
found in the Smartmodem User Manual Appendix H．Obviously some nice commercial terminal packages exist for the Atari，but this program has made me happy for some time now． With the Hayes Smartmodem and the Atari Computer，I am sure you will also enjoy computer communications．

Listing 1

```
    5 60T0 500
    IO REM SIMFLE TERMINAL FROGRAM
    11 FEM TO BET AND FUT CHARS
    12 FEM TO AND FROM MODEM
    13 OFEN #1,4,0,"K:"
    15 OFEN #3,8,0,"E:"
    20 E0SUB 400
    30 IF FEEK(764)=255 THEN 60
    40 GET #1,A:FUT #S,A
    50 FUT #5,A
    60 5TATUS #5,XY
    70 IF FEEK(747)=0 THEN 30
    80 GET #5,A:IF A=0 THEN 30
    70 FUT #S,A:GOTO S0
101 FEM SMART300
102 FEM KELTY ENGINEERING
10S REM WRITTEN GY JOHN R. KELTY
104 REM LINCOLN, NEBRASKA 68505
105 REH
10% FEM USE THIS FROGRAM TO EONNECT
107 REM AND FROGRAMM THE HAYES
10日 FEN SMAETHODEH TO THE
107 REM ATARI COHFUTER.
110 FEM
111 FEM THE HODEM CABLE SHOULD
120 REM COHAECT TO THE 850
130 FEM INTEFFACE MODULE,
140 FEH FOET #1
210 REM
220 REN THE 3O0 GAUD HAYES MODEM
2SO FEM NAY GE USED WITH AMDDEM
240 EEM OR ANY OTHEF TEFMINAL
250 FEH FACKAGE THAT ALLOWS THE
260 FEM HAYES TO RUN AT }300\mathrm{ BAUD.
270 REM
280 REM THE HAYES WILL UPEFATE
2gO REM LOCALLY AT HIGHER FATES
300 FEN EUT NO HIGHER THAN 300
310 REM WHILE ON LINE.
320 REM
STO REM SEE YOUR USER'S MANUAL
340 REM FROM HAYES FOR DETAILG.
350 FEH
360 FEM ***************************
370 REM
400 OFEN #5,13,0,"F:"
410 XID 38,#5,0,32,"R:"
420 XIO 40,#5,0,0,"R:"
430 FETURN
450 GET #5,XX:GET #5,XX
460 GET #S,X*:
    IF XX<>IO THEN FRINT CHE*(XX);
470 IF XX<>10 THEN 460
450 LLUSE #5:RETURN
S00 DIH {$(30),F%(16),DP&(2)
510 FFIKT "; ***** SMART MODEM
    *****"
520 FRINT " Ey:
```

KELTY ENGINEERING＂
530 FRINT＂
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＂
540 FRINT ：
FRINT＂CONNECT CABLES TO HODEM，
545 FRINT＂COMPIJTER AND FHONE COMFANY．
560 PRINT＂FRESS ENTEF WHEN READY＂：
INFIT A
570 FRINT＂？＂
5月0 GOSUB 400：FFINT \＃S，＂AT Z＂： G05UB 450
$590 \mathrm{FE} \| *$
GOO FEM MENU
610 FRINT ：FRINT＂1 AUTO DIALING＂
620 PRINT＂2 AUTO ANSWERI㫙＂
660 FRINT＂SELECT ONE OF THE ABOUE＂
670 INFIT A

690 G0T0 510
700 FEM $\because * ~$
710 REM AUTO DIALING FOUTINE
$720 \mathrm{REM} *$
730 REM
740 FEINT＂3AUTO DIALING＂
750 FRINT＂1 DIAL A SAVED NUMDER＂
760 PRINT＂2 DIAL A NEW NUABEF＂
770 INPUT A
780 ON VAL（AF）GOTO B00，980
790 G0TO 740
800 EEM $* *$
B10 HM＝2：FEM HOW MSNY NIMEERS
820 REM TO CHANGE THIS LIST， MAKE HM＝HOW
g25 REM MANY \＃YOU WANT TO LIST EMAY DF 9）．
8．30 FEM THEN INSERT LINES SIMILAR TO THOSE
835 REN BELOW WITH YOUF NUMEERS AMD NAMES．
840 FRINT＂？AIMEEES YDU CAN EASILY CALL＂：EESTOFE
850 DATA＂ 1 XXY－XXXX A FRIEND＂
860 DATA＂2 $2 \times X-X X X-X X X X$ A EBS
670 FOF $K=1$ T0 HM
880 READ A $=$ PRINT A
890 NEXT K
900 FRIMT＂SELECT ONE OF THE AEOVE＂
710 PRINT＂（BREAK AND LIST TO EDIT
THESE NUMEEFS）＂
920 INFUT AG：FESTOFE
$7.30 \mathrm{NE}=\mathrm{VAL}(\mathrm{A})$
740 IF NEC 1 DR NBYHM THEN 900
950 FOK $K=1$ TD NE：READ A $⿻$ ：AEXT K
75.5 F゙ $=A=A(5,16)$
$760 \quad 505061070$

```
    770 RETURN
    760 FEM ********方*****************
    q90 FRINT "DIALING A NEW NUMEEF"
1000 FEI的T "TYFE IN THE FHOLEE NUHEEF
        THAT"
1005 FRINT "YOU WISH TO [ALL."
1010 FFINT "EXAMFLES:"
1020 FFINT "1-800-XXA-XXXX LONG
        DISTANCE"
10J0 FEIMT "112-800-XXX-XXXY FFOM
    EINCOLH"
1040 FEINT "XXX-HXDX LOCAL
    CALL"
10G0 FEINT "TGFE DESIFED NUMEER "::
```



```
1070 605UB 1070
1050 RETUFA
j0马0 FEN **************************
1100 FEH NUMEEF KNOWH AT THIG FOINT
1110 FEM FEADY TO DIAL
1120 605118 400:
    FEIUT #S,"AT FO T D":PF:
    gosue 450
I130 FEM IF YGU NEED FULSE DIALING
        THEN
1140 PEF SHESTITUTE A 'F' IN AEDVE
        LINE
1160 EE,G **:%**********************
1170 FEM YOU CAN LOAD ANY TERHINAL
11g0 FEM FADKAGE THAT YOU HISH EY
1170 FEM EDITING THE NEXT LINES.
1200 FEM FUN "D:ANODEM"
12SO FRIAT "YOU NEED TO USE YOUR
        OW目:
1240 FFINT "TEFAIMAL FACRAGE AT THIS
    FOINT"
1250 FFIHT "SSUCH AS TELELINK. ANE
    OTHEFS!."
1300 6070 2040
1310 FEM ********************
1320 REF AUTO ANSWEF FOUTINE
13SO EEM ********************
1340 नEM
1350 FET目 "YAUTO ANSWEFING"
1360 FFINT
1370 FEH HENU
13BO FFINT "1 DO NDT ANSMEF"
1SFO FEINT "2 ARSMEF IMMEDIATELY"
1400 FRINT "马 ANSWER AFTER XX EINGS"
1440 FRINT "SELECT ONE OF THE AEGVE:
1450 [自UT A &
1460 FEINT "? AUTU ANSWEEING"
1470 DN VALUAGO G0SUS 1490,1560,1720
1480 60T0 1310
1470 FEM ##***********************
15O0 FEM [0 ROI ANSUEF
1510 FEINT " ***00 NOT
        ANGWEF:##"
1520 FFINT "THE SHAFT MODEN AHSGEF
    FINCTIO*"
15SO FEINT "15 DISABLED."
1540 [05UE 400:PRINT #5,"4T 50=0":
        g05!jE 450
1550 G010 2040
1560 FE|f *************************
1570 REH GESMER INMEUIATELY
1580 FFINT " ***ANSWEF
        IMAEDIATELY***"
IFDO FFIMT "THE SHART HODEM WILL
        ARSWEF ALL"
```

1600 FFIHT＂EALLS IMHEDIGTELY．＂
1610 FRINT＂USE THIS TG TFARGFEF
EALLS THAT＂
1620 FRINT＂ARE ALFEADY IA FFDGEESS EETWEEN＂
1630 FFINT＂TWD INDIUIDUALS TG COMHUNIEATIGN＂
1640 FRINT＂EETWEEN THEIF ［DNF ITEFS，＂
1650 G05UB 1870
ibbo bosub 400：FFINT \＃E，＂AT＂：DFt？＂A＂： GOSUE 450
1670 FRINT＂AT THIS FOINT YOU NEEO TO FUN：
1680 FRINT＂YOUF GUN REEEIVEF＂
1690 FRINT＂PROGRAM TG INTERFFET THE＂
1700 FEINT＂INEOMING CALL．
1710 GOTO 2040
1720 REM $* * * * * * * * * * * * * * * * * *$
1730 KEM ANSWEF AFTEF ix FIMES
1740 PFINT＂＊＊＊ANSUER AFTEF A FINGS＊＊：
1750 FFINT ：
FEINT＂THE SHART MODEA HILL AHSWER ALL＂
1760 FRINT＂CALLS AFTER THE GUAEEF OF EINGS＂
1770 FRIMT＂YOU SELECT FFOM T TO 255 FINGS）＂
1780 FEIAT
1790 FFINT＂HOW MANY FINGS il T0 255；
＂：INFITT FO
$1500 \mathrm{FG}=\mathrm{IHT}$（FG）
1810 IF PGCI OF RGY255 THEN 1790
1820 FFINT ：
FRINT＂THE FHONE WILL EE
ANSWERED＂
1830 FRIN＂AFTEF＂：EG：＂FINGS．
1840 GOSUE 1870
1850 G05U8 400：
FFINT \＃5，＂AT＂；DF車；＂Sy＝＂：F6：
GOSUE 450
1860 PRINT ：GOTO 1670
$1870 \mathrm{REM} *$
1890 FEM FULL DE HALF DUFLEX
1890 PFINT ：
FRINT＂DO VOU WANT FULL OR HALF DUFLEX？
1900 FFINT＂（IF YOU DO NOT KMOA， TEY HALFI．＂
1910 FEINT ：FRINT＂1 FULL DLFLEX＂
1920 FRINT＂2 HALF DUPLEX＂
1830 INFUT A
1740 ON UBL（A
1950 FEM FULL DUFLEX
1760 OF $=$＝F ！${ }^{\text {＂}}$
1770 FEINT：
FRIAT＂FULL DUFLEX SELECTED．＂
1980 GOTO 2020
1970 EEH HALF DUFLEX
$2000 \quad \mathrm{DF} \$=$＂F9＂
2010 FEINT：
FRINT＂HALF DUfLE GELEETED．＂
2020 FRINT
2030 FETURN

2050 REM EXIT FOUTINE
2070 FFINT＂THIS FRUSRAH HAS ENDED．＂
2080 G0TD 10
AICRO

Atari Music Player

By Tom Marshall

Atari Player enables you to play music on your Atari. It converts the Atari into a simulated organ with the organ keys being represented by the keys on the Atari keyboard, as shown above. Each note you play can be heard over one of the Atari voices. The keyboard spans three complete octaves, beginning with a low C and ending more than two octaves higher with a B. Each note that is played is stored in memory so that it can be instantaneously replayed and then saved on cassette tape or disk. Later you can load your song in again and replay it.

We have included a feature in Atari Player that allows you to stop playing, go back to correct mistakes, replay the song from the beginning to the current note, and then continue playing additional notes. Absolute perfection is possible using the editing option |number 5], which allows you complete control over every note that has been played. You can change the tone, octave, and/or duration of any of the notes; or, if you wish, you can add more notes or remove them altogether.

With the Atari Player installed in your computer you can make your Atari a musically instructive as well as entertaining device.
No. 68 - January 1984

Operating Instructions for Atari Player Demonstration

The first time you use the Atari Player, you should listen to the song already provided on your cassette or disk to appreciate how much can be accomplished. To do this, follow the simple steps listed here.

1. Using standard Atari loading procedures, load Atari PLAYER. If you are using a cassette, leave it in the cassette unit; do not rewind it.
2. Type 'RUN' followed by the 'RETURN' key.
3. You will be presented with the information that appears on the display screen below.
4. Press the 4 key to select the 'LOAD SONG' option.
5. The display will ask for the file name under which the song is stored.
6. If you are using a cassette, type ' C :' followed by the 'RETURN' key. This will cause the next file (a prerecorded songl on the cassette to be loaded. If you are using a disk, then type 'D:SONG' followed by the 'RETURN'. This will cause the song
already provided in the file ' $\mathrm{D}: \mathrm{SONG}^{\prime}$ to be loaded into your Atari.
7. When the song has been loaded, Atari Player will tell you how many notes have been loaded, wait a few seconds, and then return to the original menu.
8. Press the 2 key to select the 'REPLAY SONG' option.
9. You will now be treated to a rousing song played automatically on your Atari computer.

Using the Atari Player

After choosing the 'PLAY SONG' option from the menu, the program will prompt you for the name of your song. (This is not the same thing as the file name that disk users have to supply when performing a save or a load. The name is saved with the song just for convenience and has no bearing on the song itself.) Then a representation of the Atari keyboard is printed on the screen in the format of a two-keyboard organ. The bottom row of keys represents the lowest notes, starting with ' C ' and ascending alphabetically. The second row of keys represents the sharps and flats (black keys) that correspond to the first row. Note that there are inbetween keys on the second row of the Atari for every pair of firstrow notes. This is different than the normal organ keyboard and means that some of the second-row keys do not sound when pressed $(\mathrm{A}, \mathrm{F}$, and K$)$. These keys can be used to introduce rests into your song.

The third row of keys represents the second keyboard of the organ, starting at middle ' F ' and ascending to high ' B '. The top row of keys represents the sharps and flats corresponding to this second keyboard. When you have mastered the keyboard, you are well on your way to composing your own music. Read on.

At the beginning, the program waits for you to start the song. This is one of the few times when a pause doesn't count. Once you start playing, the computer keeps track of every note and its length exactly as you play it. Practice a bit to get the feel of the keyboard. It is not as simple as a piano, especially with the letters on the keys distracting you from what the true note is. The white keys on the display have the actual name of the note printed over the keyboard name of the key to help keep you oriented.

After you start a song, you may
discover that you didn＇t mean to play a particular note．Fortunately there is a mistake－recovery method．As soon as you realize that you have made an error （sometimes the first note is an error）， press the space bar to pause momen－ tarily．You will be presented with several options．
1．CONTINUE allows you to start playing the song at exactly the point where you stopped．This is a useful technique for the times when you become confused as to which note you want to play next；press the space bar to pause，regather your wits，and press＇ C ＇to continue from where you stopped．
2．REPLAY will play the song up through the current note so that you can inspect your masterpiece as you input and make corrections if necessary．This option can be chosen as many times as you need it．
3．BACKUP is the option for which you＇ve been waiting．This allows you to remove one note at a time from the current song，all the way back to the beginning if you want． When you make a mistake and press the space bar to pause，press the＇B＇ option and the note you are erasing will sound．Another＇B＇will erase the next note，and so on．Then press－ ing＇ C ＇will allow you to continue your song from the point to which you have backed up．
If，no matter how hard you try，you can＇t seem to get the song perfect，then the next step is to use the editor（option 5），which will allow you to manipulate the more obscure aspects of your song．

Using the Editor

The Editor option enables you to fix any minor（or major）mistakes that may creep into your performance．It allows complete control over every note in your song；the note，octave，and duration can all be changed to your specifications．And when using the in－ sertion feature，you can start from scratch and construct your own song without ever playing a note on the Player keyboard！The Editor option is the perfect complement to Atari Player．

The first thing that the editor does is to list the notes currently in memory in groups of 30 ．These are notes that have been either entered from the keyboard or loaded in from a previously saved song．The＇Next＇and＇Previous＇ commands allow you to page forward and backward through the note tables

Listing 1：Atari Player／Editor

```
1G REM ATARI PLAYERノEDITGR
```



```
5 GEET H1, AEIF A<4S OR A>55 THEN 5
0
```



``` 1GGGPRIMT ：PRIMT＂INPUT song name ，．－＂；：IMPHT BS：IF BS二••＂THENB S＝＂MOMAME＂＇
\(1010 \quad v=0\)
101015 G0518B 14000
\(1820 \mathrm{D}=\mathrm{B}\)
\(1030 D=D+1: A=P E E K \subset 764\) ：IF \(A=255\) TH EM 1030
```

1040 POKE $764,255: G 054 B$ 5506：50UMD 0，日，0，0
1060 IF $A=12$ THEM $50 H M D$ O． H＝U＋1：WCU＋13＝0：G0TO 1120
1070 TF $A=33$ THEN MAX＝U世1：GO51B B6 BO：GOTO 1015
1080 IF $A>62$ THEN $\quad=3$
1096 TP＝A：SOHND O，ASCCPITCHSCTP＋1， TP＋133，D5，L
 01120
$111666 T 01820$
1120 POKE CF，OERETHRM
2006 ？＂MPLAYING＂： $\mathbf{2}=1$
2010 TF NCUS＝ 0 THEM $? ~ \because ? N O$ SONG IM MEMORY＂：GOTO 9 G日G
2020 G0SuB $5200:$ IF TP＝日 AND D＝日 TH EM RETMRM
$203050 H N D$ 日， $5,0,6: G 05189806: U=0+$ 1：IF U U＝MAK THEM SOLMD 日，日，G，G ：U＝1U＝U－1：RETHRN
 64， 255 ：RETHRN
205060102020
 P 3506
3G10 PRIMT 倠2；BS
3020 FOR U二1 TO MAM：？H2；WCUJ：NEMT u
3040 CLOSE H2：？＂SAUED＂E；MAM－1；＂M OTES TO＂；FS：GOTO 9006
35日G CLOSE BZ：？FTLE I／O ERROR＂：G
0709116
4000 GOSMB 910日：OPEM H2，4，日，FS：TRA
P 3506
4010 TMPUT H2，BS
4020 IMPMT $42 ; A=W C U\rangle=A$
4030 IF A フ THEN $U=U+1=G 0 T 04620$
4646 MAx＝U＝CLOSE H2：？＂LOADED＂：MA K－1：＂MOTES FROM＂；FS：GOTO $9 G G$ θ
5006 POKE $201,5:$ POKE CF，1：POKE BZ， θ
5020 v＝a
5030 POKE CF， $1: P O K E \quad 703,24: P R T M T \quad$－ MCHRREMT SOMG：＂5；BS

 .19
5040 FOR KMAZ TO $2 Z$ STEP ZO：FOR YY $=3 \quad$ T0 17： $4=0+1$
5060 G054B $5200:$ IF WCUP 50 THEN MAM ＝U：POSTITDM KM，YY：PRIMT＂EMD＂： GOTO 5130

```
5662 MO=A5CCNTOCTSCTP+1,TP+1》1: O=I
```



```
568 POSITION HR,YY:PRINT U,NS;"
    "';0;" -"; D
5096 HEXT YY: NERT Hभ
5130 POSITION 日, 2G:POKE 7 O3, 4:POKE
            CF,
5146 PRIMT 'HEKT, GREUTOUS, CHRRE
        MT, OR EB": AS="'":IMPAT AS:PP=U:
```



```
\(5150 \quad \cup=0: T F\) ASC(AS) \(=46\) AND ASCCAS
    》<
5166 TF \(U=6\) THEN 5436
5170 PRIMT "CHANGE, DELETE, OR E
    NSERT"
5186 GOSHB \(5546:\) IF \(A S=" C=T H E N S 20\)
    6
5196 GOTO 5460
5200 6054B 9206
5240 TF WCUX = THEN 5276
\(5250 Y=A 5 C \in N T O C T 5<T P+1, T P+12): 0=1 \mathrm{~N}\)
    TCY/13): N二チーIMTCY/132313
5260 PRIMT "AKNOTE MHMEER: ": U
5270 as=: : PRINT :NEN LENGTH: ", : IN
```



```
    M51>2 THEM 5296
5302 IF LENCNち? = 1 THEM NS C2)=" "
5310 FOR N二G TO \(12: I F\) NTSCMMZ
        Z+Z〉《 ( N THEM MEMT M : PRINT "?N
        OTE MOT FOMND.":GOTO 5290
```



```
5325 TF UALCA5>>2 THEN \(A 5=12{ }^{\circ}\)
```



```
    SCCNTOCTSCTP+1, TP+1》) < S NT THEN
        MEHTTP
5392 GOSHB 550 : REM PACK IT IMTO W
    (U)
\(5409 U=U+1=60 T 05260\)
5415 TF U<G THEM U=G
5420 PRIMT "M": GOTO 5030
5430 IF ASニ"P" THEM U=PP-6G:GOTO 5
    415
5440 IF \(A 5<>\) MAN THEM 5450
```



```
    9>MAR THEM PP=MAK-3
5443 IF PPくG THEN PP=G
5444 U OPP: GOTO 5036
5450 IF AS="CO THEN U=PP-3G:GOTO 5
    415
5458 RETURN
5460 TF AS="D" THEM 5516
5480 FOR I=MAM TO U STEP -1: MCI+1)
    =WCID: NERT I:MAK=MAK+1:GOTO 51
    46
5510 FOR I=U TO MAK: WCII二WCI+IY: NE
    HT I : MAX=MAK-1: GOTO 5146
```



```
    THEM 5540
5550 RETHRN
5999 END
```



```
6026 IF \(5<1\) THEN 6016
```

so that you can look for the note for notes）that you wish to change．The ＇Current＇command simply redisplays the table starting at the same note． This option is usually used after an in－ sert，delete，or change to see how the song looks．

The＇\＃＇option allows you to change the current notes in memory，one at a time．Note that the editor does not want the number sign itself；it is expec－ ting a number．Also，it does not change any notes on the tape or disk，so don＇t worry about making a mistake．Experi－ ment with changing notes and then play them together to see how they sound．

Pressing the return at the＇NEW LENGTH：＇prompt will return you to the main menu．Pressing return at any other prompt will leave the rest of the parts of the note unchanged and skip ahead to the next note．This allows you to change the lengths without re－ entering the remaining values that you don＇t want to change．

Pressing the $/$＇and return at any prompt preserves that one value and jumps to the next prompt．For example， if you don＇t want to change a value， such as length，but do want to change the note or octave，press＇$/$＇and it will skip over the values you want to save without your having to retype them．

The insert option moves all the notes（including the one whose number you entered）forward one position and then returns you to the＇Next， Previous，Current，or \＃＇prompt．You might want to use the＇Current＇option now to see how the song looks．Change the note that was at the point of inser－ tion to whatever specifications you want and you have just entered a note．

Delete moves all the notes follow－ ing the one you specified down one position，effectively erasing that note． As with the insert option，you will be returned to the＇Next，Previous， Current，or \＃＇prompt．Again，you may want to use the＇Current＇option to see how the song looks after the deletion．

When you are prompted for a new note，the only notes that will be ac－ cepted are＇ C ＇，＇ CH ＇，etc．，as listed in the data statement（line 13010）．A rest is indicated by＇［ ］＇．The program looks up your note in the note table and con－ verts it into the number that represents that particular note．If it can＇t find that note，it will give you the＇？NOTE NOT FOUND．＇error and return to the＇NEW NOTE＇prompt to give you another chance to change it．

Other Menu Options

There are five additional menu options that allow you to hear your song，load a song from or save a song to the tape player，change the tempo of the song，or quit．

Choosing option 2，＇REPLAY SONG，＇will play the song current－ ly in memory over the television speaker．The routine uses the cur－ rent tempo for the speed at which to play the song．If there are no notes in the song，then the error ＇？NO SONG IN MEMORY＇is printed and you are returned to the menu．
＇SAVE＇and＇LOAD＇options are numbered 3 and 4 ，respectively．To save the current song，choose op－ tion 3 and enter the file name of the song to be stored．If you are using a cassette you can specify on－ ly＇ C ＇＇as your file name．If you are using a disk，the file name must be a standard disk file name．Note that this file name and the name of the song you specify when you choose option 1 （PLAY SONG）are not the same．The name refers to the name that you wish the song to be titled－for the sake of conve－ nience only．The file name is mere－ ly where you want the song to be stored and applies only to disk users．If you are using a cassette－ based system you will be prompted to press PLAY and RECORD on the tape player．When the song is sav－ ed，the number of notes and the file in which they are saved are displayed and you are returned to the menu．If you are using the tape player，it will stop．

Option 4 is similar in operation to option 3．Remember that when you LOAD a new song，you will erase any song currently in memory；you must SAVE the cur－ rent song（if you want to keep it for later use）before loading a new one． The file name prompt will now appear．（If you are using a cassette， there are no file names that you can specify．The tape will read from where it was left last．）When the song is loaded，as when saving， the number of notes and the file they were in are displayed and you are returned to the menu．Again，if applicable，the tape player will stop．

To change the current tempo setting，choose option 5．The minimum（fastest）setting allowed is＇ 1 ＇．There is no restriction on the

6030

7696 8006
8016
8020
8036
8046
8050
8660
8670
8686

 08010

9150 ？＂IMSERT SOMG TAPE AMD PRESS ［EETMETN＂

9216 D＝WCUS－TPM1日G日：RETLRN
9506 IF D 999 THEN D＝995
951日 H（U）＝INTCTPH1日日G＋D）：RETHRN
S日G日 SOHND O，ASCCPITCHSCTP＋1，TP＋1） 3，D5，L
9810 FOR I＝1 TO SMDノB：NEXT I ：RETHR M
1G00G GRAPHICS G：5OHND 0，O，O，日：POK E CF， $1=5 E T C O L O R 1, G, G=5 E T C O L O R$ $2,3,4: 5 E T C O L O R$ 4， 2,6

13010 DATA C CHD DHE FFFG G\＆A A\＆B $[1$

14000 POKE ©2， $2: P O K E C F, 1: ? ~ " M+P L A$ Y WHEM READY SOMG：＂；BS：SETCO LOR 1， $1, G: 5 E T C O L O R \quad 2,12,6$
14010？
M TOEND SOMG：；
14020 ？＂A，F，OR K＝REST＂

maximum (slowest) setting, except for the fairly large internal limits of the Atari. However, even a setting of just 100 will result in extremely long notes.

When you are finished with Atari Player and want to return to BASIC, choose option 6. Always remember to save any song that you are currently working on before choosing this option. If you forget this rule, typing 'GOTO20' might enable you to return to the program without losing your song.

Programming Concepts

Using a Menu to Make a Choice

1. Input with a Single Keystroke

Normally input from devices is done with the INPUT statement. The only limitation of this statement is that it requires the input data to be followed by a carriage return. Thus, any input from the keyboard using this method would require at least two keystokes No. 68 - January 1984
one for the character being input and one for the return key. The way around this is illustrated in program lines 30 and 50 .

Line 30 opens the keyboard for input. This means exactly what it seems: you can now input from the keyboard. The open statement is usually used for access to files on cassette or disk, but it can be used for any connected device, such as the keyboard and even the screen. The device specification for the keyboard is ' K :', which is the open statement's fourth parameter.

Because a single keystroke input is preferred, the keyboard input for the menu (line 50) is done with a GET. The GET statement waits for one character of data from the keyboard; i.e., the single keystroke. Thus no carriage return is required and an option may be selected by striking a single key. However, the data input is not a character, or a letter, but rather a number. This number is the numerical representation of the typed letter and is called an ASCII code.

MICRO

2. ASCII Codes

Because computers cannot handle anything other than numbers, a method for handling characters such as punctuation marks, letters of the alphabet, or any other character, is needed. What has been devised is the ASCII codes (American Standard Code for Information Interchange), which are numerical representations of each character for the computer to handle internally. Most users never see these numbers for they are converted back to characters when displayed on the screen, but they are neccessary when dealing with such specific statements as the Atari GET.
3. Using a Menu to Make a Choice: Selection by Number

When you run Atari Player, the first display that you see is a list (or menu) that tells you what options are available. Each item on the menu is selected by pressing the number associated with it. The BASIC program steps required to evaluate your choice are in lines 50 and 60.
O
O

の) 55 THEME
a*igesigoto 40

Line 50 gets the ASCII code for the keyboard character pressed and stores it in variable A. The following IF ...THEN statement checks to see whether or not the character typed was a number. Note that, as stated above, the GET statement gets the internal code for the character typed rather than the character itself. This means that the program has to check for the characters $1-9$ rather than the numbers $1-9$. If A is less than 49 (ASCII 1) or greater than 55 (ASCII 7), then the character typed is ignored and the program returns to line 30 to get another choice from the keyboard.

Line 60 does the actual branching to the appropriate routine. Since the only options available are listed 1 through 7 , and the program routines for each start on the line numbers that are multiples of a thousand (1000-7000), the branching to these routines can be done by formulae. All that is needed to branch to the appropriate routine is to multiply the option number chosen by 1000 and then perform a GOSUB to that result. Thus, 48 (ASCII 0) is subtracted from the code in A to convert it to one of the numbers 1-7. Then a GOSUB to the line number A * 1000 is performed.

This is a useful space conservation technique. The only other way to do this would be to have a fairly large ON...GOSUB statement followed by the starting line number of every subroutine.

4. Selecting by First Letter

If the space bar is pressed during the 'PLAY SONG,' then another menu is displayed.

The first character of each item is displayed in reverse video to indicate which letter is to be pressed on the keyboard to select that choice. The routine that gets the characters from the keyboard is at line 5540. Note that this routine converts the number put in variable A into a string $|A \$|$ via the CHR\$ command. This is done so that the routine will return a string holding the choice as opposed to returning the ASCII value of the choice. That is, this routine returns a letter, which is then serviced by its own IF...THENstatement.
tirely. For the beginner, using this location is rather difficult as the codes follow no obvious pattern. For instance, a space is a 33 , the letter A is 63 , the B is 21 , and so on. Therefore, the user must know which keys to expect ahead of time. The following short routine can be used to discover the various key codes. After typing RUN, simply hit a few keys; their corresponding codes will come up on the screen.

10 PRINT PEEK(764):GOTO 10

Lines 1030, 1060, and 1070 show how Atari Player uses this location. Note that it is POKEd with 255 after being read. This insures that the same key can be hit twice and registered as two keys. That is, because the location holds the last key hit, if you were to hit, say, the ' Z ' key twice, and if the location was not reset after each read, it simply would not change from the first ' Z ' to the next. This means that two notes would be read as one /with a

If there are only a few choices, as in this example, then there is not a lot of code. If there were many choices, then the amount of code to service the letters could be significant.

5. Accessing the Keyboard for RealTime Situations

The above method of selecting by first letter using the GET statement is fine for most situations involving input with a single keystroke, but it is severely limited in real-time applications. This is because the GET statement actually waits for a key to be struck. For instance, suppose you were writing a game that needed to keep track of the elapsed time between keystrokes. This would be impossible with the GET statement because the loop required to keep track of the time could never be executed. Such was the problem in writing the PLAY SONG option, which has to keep track of such things.

The Atari uses memory location 764 as the place to keep the last key hit. That is, whenever a key is struck (no matter what program is running) location 764 is filled with a number that represents the last key pressed. But this number is not ASCII. This location uses the actual hardwired codes for the keyboard - a different set of codes en-
rather long duration!. Resetting location 764 also allows us to keep track of the duration in the first place (line 1030J. By checking for the 255 , we know that the key has not yet been hit and that the duration should then be incremented.

Space Saving with Arrays

Atari Player uses many arrays - for the storage of its notes, keyboard entries, and other such internal data. There are many ways of storing this information in the arrays. This section deals with the most economical way possible for storing the types of information contained in Atari Player.

1. Numeric Arrays

Atari Player could have stored all of its information in the form of numerical arrays as all of its information is, indeed, numbers. But numbers are very costly to store in BASIC arrays, especially on the Atari. Atari BASIC
'eats' up 15 bytes plus 6 bytes for every cell in the array. This is not including the space that is eaten up by the variable name and the DIM statement itself. For example, an array that was dimensioned for 100 cells would eat up 15 plus 6 times 100 - or 615 bytes! Therefore, the only array that we made numerical was W, and it was dimensioned for a whopping 501 cells. Over 3000 bytes is used to store it.

However, things could be worse. The W array has a little more information than normal crammed into it. In fact, that one array is made up of both the keystroke (for the note played) and the length of time that it is played. It was necessary to perform such a numerical combination to keep from wasting an exorbitant amount of memory. But before we get into such a space-saving trick, let's first examine how not to program the storage area.

As mentioned briefly before, each note that you play involves two pieces of information that must be saved by Atari Player: the number (keystroke) of the note and the duration of the note.

We could define a two-dimensional array that contains a number for both parts of each note: e.g., $\operatorname{DIM} \mathrm{W}(500,1)$ would reserve space for 500 notes (the zeroth element is not usedj with two numbers per note. How much memory do you think this would take? It really is deceiving. Since 500 times 2 is 1000 , is that the total number of bytes required? No! Each Atari BASIC array number requires six bytes of memory. Therefore, it would take $6 * 1000$, or 6000, bytes of memory! On a 16K Atari (which, by the way, has only 13000 some bytes left after the operating system has taken its share) that leaves a little over 7 K for the rest of the program.

You have to get a bit tricky to squeeze more out of the song space; but there is nothing wrong with getting tricky when writing programs. In fact, that can be half the fun! To really squeeze the memory in Atari Player, we took advantage of the size of the number that the Atari arrays can hold. The two values that we need to keep for each note played are the note number (0 to 38) and the duration (which is limited to 0 to 999 units). If only we could pack both of these individual values into a single number for storage

5352 GOSMES5E日: REMPAEK ITT TETG WCOJ .

and then unpack them when we needed to use them. Well, good news - we can!

The technique to pack the numbers is shown in line 5392.
This equation is not as difficult as it may at first appear.

W (V) is the array of notes where V is the number of the note in the song
+TP * 1000 multiplies the keystroke number (0 to 63) by 1000
+D adds the duration value 10 to 999)

All we have done is multiply the keystroke value that we need to save by enough to make sure it does not overlap with the duration value. This insures that we will be able to unpack the separate parts later. The unpacking is a bit more difficult than the packing, but conceptually it is simple. All we need to do is reverse the packing process. This is accomplished in the following lines:
elements are of equal size this is fairly simple because the starting character position of any of the elements can be calculated using the index. Take for example the following lines:
end of line 5062. Note that the elements in this case must be two characters long: a note, ' C ' for instance, followed by either a space or a sharp sign, '\#'.

```
10 DIM MAMESC3G%
```



```
    RALPHBILLY:
    100TINPMT INDER: REM - - INDEH
    STARTS AT GRーニ
    110%PRIMT MAMESCINDEMHS5+1,INDEM
    12045%5% 100
```

This routine simulates a string array where the elements are first names. In Atari BASIC, to get part of a string, you specify the string name followed by the starting and ending character position of the substring you want. In line 110, what is printed is the substring that starts with character position INDEX*5+1 and ends with INDEX*5+5. Thus, because the character position is calculated, every element must be the same length. If they aren't, and this is usually the case, then the smaller ones must be padded

Line 9200 restores the note number by dividing by 1000 .

Line 9210 restores the duration by subtracting the note number multiplied by 1000 . This simply returns the remainder that was sheared off by the INT 1000 .

The above lines of program take the single integer value and convert it back into two separate parts. This method results in a 500 -note song requiring only 501 array slots to store it, at six bytes per number, for a total storage of just over 3000 bytes - only half the amount that would be needed if we stored the two values separately!

2. Simulating String Arrays

NT\$ is a string that holds all the possible note symbols. Normally these symbols would be entered separately in a string array, but the Atari does not have this capability. (It does dimension strings, but this refers only to the lengths of the strings and that doesn't help us much.! Instead, all string information must be concatenated, or 'strung together,' one after another in a single string. This means that the only way to access the different elements is to access the different character locations within the string. As long as the No. 68 - January 1984
with spaces. Every element must start at every character position that is a multiple of some number in order for this particular technique to work.

The note symbols used by Atari Player are stored the same way. They are stored initially in line 13010 and then READ in as a single string (NT\$) in the initialization routine at lines 12000 through 12050. Assuming Y is the note number ($0-12$), the following routine will set $\mathrm{N} \$$ equal to the corresponding note symbol:
$10 N \$=N T \$(Y * 2+1, Y * 2+2)$
In fact, this very routine is found at the

There is another way that strings are used in Atari Player. It is a bit more complex but basically entails the same concepts. The difference lies in the fact that this method is used to store a series of numeric values such as would normally be done with numeric arrays. The savings are space and time and for the following reasons.

Strings use up only one byte of memory per character. A little more is used up in the variable name and such, but that is essentially it. So, if we were to somehow convert every number that is in a numeric array (six bytes) to a string character (one byte), we would have a savings of five bytes per element. Thus, a numeric array dimensioned for 100 elements that would normally eat up 600 bytes of storage could be made to fit in merely 100 bytes.

Loading in the initial values in a string is very fast, whereas loading in the initial values in an array is tediously slow. This is because string loading can be done with a single statement and all the elements can be loaded in at once; the elements in an array must be loaded in one after another in a loop. For arrays of ten elements or less, conversion to a string is hardly worth the effort because the loading is so short and, therefore, does not take up much time anyway. But for larger arrays, string conversion is definitely worth-

while because the loading time of even several minutes can be cut down to only a few seconds at most.

Lines 12042, 13000, and 13020 demonstrate how the strings are stored and read in.

There are a couple of problems when working with these strings. First, when addressing the element you must, in reality, address the individual characters of the string. That is, the index that you would normally use to access any of the elements in the numeric arrays is now the character position in the string. But element positions in arrays start at zero [0] while string positions start at one [1]. Therefore, when accessing the data in strings, you must either ignore the zeroth element entirely and start the
element numbers off at one, or add one to the element number so that the element that was previously numbered zero will reside at string position one (1). Line 9800 demonstrates how this latter method is used in Atari Player.
number that could possibly be stored in one is 11111111 binary (255 decimal). Also, the number must be a nonnegative integer. To get the number in the string as an element it must be converted to a character via the CHR \$

98G日 50UND G, ASCEPITCHSCTPH1,TPH1》3 D5,

where TP is the index to the string array PITCH\$.

The second problem is a little tougher for the beginner to understand. Since each character in a string is essentially one byte of storage internally, the size of the numbers you can store are limited to what a byte can store. Because, as you may know, bytes are only eight bits long, the largest
function. This function will turn the number specified into the character whose ASCII value is that number so that it may be stored in a string. When accessing that element, to get the number from the character, the ASC function must be used. This function converts the string specified (presumably an element in the string) to its ASCII equivalent. (See Programming Concepts 2: ASCII Codes.)

Atari Player Variable Usage

Constants

CF	POKE location for cursor inhibit
DS	Sound distortion
L	Sound loudness
LN	Last element available in W array
NT\$	String 'array' of all note symbols
NTOCT\$	Note/octave conversion from keystroke number
PITCH\$	String 'array' of sound pitches for conversion from keystroke

Variables

A ASCII value from keyboard
D Duration for current note
I Loop counter
MAX Position of the zero element in the song (end of song)
$\mathrm{N} \quad$ Note number (0-12)
NT \quad Actual note ($0-12$) plus octave (0-2)
O Note's octave
S Tempo setting (speed of song)
TP Keystroke/note equivalent
V Note pointer for song
W() Array of notes and durations
$\mathrm{XX} \quad \mathrm{X}$ position of editor's output
YY Y position of editor's output
A\$ Input string from keyboard
B\$ Song name
F\$ File name
N\$ Note symbol

by Paul S. Swanson

The number of new peripherals you can add to your Atari computer has been steadily increasing. The ATR8000 is a device produced by SWP Microcomputer Product, Inc. that adds CP / M and a few other interesting capabilities. Another addition is a modem, which opens up a new direction to microcomputer users. In addition to the modems which can be attached to the Atari computers directly, any RS232C modem can be used either with the 850 interface module or under CP/M with the ATR8000.

The ATR8000

This peripheral is actually a computer on its own and can be used with or without an Atari computer attached. It does have the standard Atari serial bus connectors, but it can use any RS232C terminal instead of an Atari, connected through its modem port.

I have had an ATR 8000 now for about a month and use it to connect three Radio Shack disks to my Atari computer. With such a setup, the drives can be used as Atari drives when not in CP/M mode, or as dual density CP/ M drives in CP/ M mode.

Using the ATR 8000 as a peripheral to the Atari computer (i.e., not in CP/M mode) allows mixing the drives so that drive 1 may be connected to the disk port of the ATR 8000 and may be a Radio Shack or other non-Atari drive and drive 2 may be an Atari 810 or 1050 connected along the serial I/O bus. In the CP/M mode, an Atari 810 or 1050 disk drive may not be used.

Two other devices that can be directly connected to the ATR8000 are parallel printers and RS232 devices, such as a serial printer or a modem. When the ATR 8000 is not being used for CP / M, it will act as a printer buffer for the printer connected to it. A 64 K ATR 8000 provides a 48 K printer buffer. This buffer will work for any printer attached to the parallel port on the ATR8000. It does not work for printers that are connected using the Atari serial I/O bus or 850 interface module.

A modem can also be connected to the ATR8000 using its serial port. The modem must be RS232 compatible and is controlled directly by the ATR 8000 . The modem connected in this fashion is not available to the Atari computer as device " $\mathrm{R}:$ ", but may be used under CP / M. A modem connected to the 850 interface may be used by the Atari computer as device "R:" when not in CP/M mode. There are several different configurations allowed with the ATR8000, particularly if you also have an 850 interface.

There are also a few drawbacks to consider. The device does generate a large amount of television interference, particularly if you use a ribbon cable connector for the printer. It may even display an interference pattern on the television you use as a monitor for your Atari computer. A ferric core is supplied with the ATR8000 to suppress this interference (by wrapping the cable from the Atari to the television around it) on your monitor/television. Another problem is that you have to build cables. The pinouts are
provided in the manual and the three ports on the ATR8000 are edge card connectors. The printer cable required the most work to assemble. The disk cable was relatively easy. The Radio Shack disk cables will work with no problem, even when using disks which are not Radio Shack disks. The only caution with using Radio Shack disk cables is that the drive selection is done in the cable, so you have to put the drives onto the cable in the correct order and the select on the disk drive must agree with the select on the cable connector.

The ATR 8000 manual explains how to alter a Radio Shack drive to use it on the ATR8000. I ran into a slight problem with that, however, because the Radio Shack drives I have are not the same kind as the ones described. If you try this and find you have the older Radio Shack drives, all that is required is to sever the only jumper across the connector inside the drive. When you open the drive, which wire to cut will be obvious.

Since most "bare" disk drives will work with the ATR8000, including $8^{\prime \prime}$ drives with an alteration, it is tempting to get an ATR8000 and two drives from a surplus electronics store instead of two Atari drives if you are upgrading to a disk system. Careful shopping can result in drives for less than $\$ 150$ each. The ATR8000 lists at $\$ 349.95(16 \mathrm{~K}$ without $\mathrm{CP} / \mathrm{M})$ or $\$ 499.95(64 \mathrm{~K}$ with $\mathrm{CP} / \mathrm{M} \mid$, which adds up to $\$ 649.95$ or $\$ 799.95$ - less than the cost of the two Atari disk drives. You will still need the cable and a power supply for the disk drives, but if you do this, you will also have the printer connection with the 48 K buffer and a modem port, plus CP/M if you get the 64 K version, not to mention the ability to add a third drive for under $\$ 150$ if the power supply is adequate for three disks.

Using CP/M with an Atari does have one serious problem associated with it, which is that CP/M requires an 80 -column screen and the Atari screen has only 40 columns. The software that accompanies the ATR8000 contains a program that turns the Atari into a terminal for CP / M use. The screen is sectioned and moves back and forth to allow you to see the 80 columns with a 40 -column window.

There is a better solution for more serious CP/M users. Austin Franklin has provided the software on a cartridge for the 800 to allow use of his 80 -column board with CP/M. The system runs on the Atari 800 computer. The 80 -column board and the software for using it for the ATR8000 is available from Austin Franklin Associates, Inc., 43 Grove Street, Ayer, MA 01432, [617] 772-0352. The 80 -column board lists at $\$ 289.95$ and the software allowing its use with the ATR 8000 lists at $\$ 29.95$.

Telecommunicating with your Atari Computer

Modems create one of the more unusual ways to meet people. All over the country there are free bulletin boards for computers to call. If you have a modem on your Atari

WORD PROCESSING
TOTL.TEXT

MAILING LIST AND LABELS TOTL.LABEL

TIME MANAGEMENT TOTL TIME MANAGER

KEYWORD CROSS RWFPRRENCE RESEARCH ASSISTANT

Announcing the newest members of the family...

SPELLING CHECKER TOTL.SPELLER (64 only)

DATABASE
MANAGEMENT
TOTL.INFOBASE

computer, you were probably informed amply about major national networks where you, for a fee, can tap in and take advantage of various services. In addition, there are many telephone numbers you can use to connect your computer to services that are completely free.

These free bulletin board services, or BBS's, are run mainly by private individuals on many different types of microcomputers. They provide a public message base, which usually have some interesting conversations that you can jump into, as well as other features. Many have downloading sections where you can obtain copies of public domain programs for your Atari. Some have "feature articles" which are the electronic equivalent of magazine articles. Most have private mail capability to allow you to communicate with specific other users if you have something private to discuss.

There are also games available for you to play on many of these BBS's while you are connected. Bulletin files may be read, which tell you things about the computer you have connected with or about some recent alterations in the services provided. Almost all of them also have a help file you can read, which tells you how to operate the BBS.

I am now involved with two of these BBS's. One I mentioned in a previous column, which is the Atari World section of the Outpost (617-259-0181). Another I have set up on my Atari computer. This one, Nite Lite, is on line from 6 pm to 6 am (eastern time) at 617-576-2426. Both support message bases and have bulletins, help screens and games. Both also answer at either 300 or 1200 baud and have lists of other boards in this area. In the near future, I will post a list of several boards in other areas of the country, so you will be able to call the number for Nite Lite (please take careful note of the hours) and get a list containing numbers that may be closer to you.

In many ways, these BBS's resemble the CB radios, which allowed communication between people who have never met. Some of the informality and lack of selfconsciousness that CB radios created in conversations can be seen on the BBS's. The main difference between CB radio and the message bases of these BBS's is that the messages have to be typed and can be reviewed. It seems to result in more sophisticated conversation, almost always interesting and well worth reading.

In addition to idle chatter, discussions concerning national or local politics, critiques concerning news items and other discourse, the message bases are also a very good source of help for you concerning, among other things, your computer. If you are having a problem and don't know how to solve it, you are looking for some hardware or just some advice on making a decision, all you have to do is post a message on one of the local BBS's. You will probably have several replies within a few days and if your problem is interesting, you may even see messages where other people have started discussing it on their own.

The future of these free BBS's looks very promising. As an example of what can happen, both Nite Lite and the Outpost are members of BINEXNET, which is Boston INformation EXchange NETwork. One of the planned functions of this network is an exchange of mail (the messages among the member BBS's. If this is implemented successfully, this network will be looking to tie into other networks around the country to exchange mail. The result, if successful, will be the electronic equivalent of letter mail, except there will probably be no charge.

No. 68 - January 1984

Product Name:	VoiceBox II
Equip. req'd:	Atari 800 computer with 40K of RAM BASIC Cartridge Disk Drive
Price:	\$124.95 Manufacturer:
	The ALIEN Group
	27 West 23rd St.
	New York City, NY 10010
	$(212) 741-1770$

Description: The VoiceBox II is a voice synthesizer that connects in daisy chain fashion to the computer just as the disk drives, etc. do. It is provided with three disks. These disks have the demo program plus programs and dictionaries which allow the use of speech or singing in your BASIC programs. There are also several games included which take advantage of the speech abilities provided.

Pluses: The synthesizer may be used to include speech and/or music to any BASIC program. This can make educational programs much more interesting to younger children. You may also become a song writer and producer for the Atari. A talking, singing head is provided complete with lip movement to match the sounds. There are two versions, one is just the outline of a head with eyes, mouth, etc. while the other is full featured including hair. The latter was programmed by Jerry White and is quite good.

Minuses: The use of the VoiceBox II is not easy if you want the sound to be realistic. The speech is reminiscent of someone from a Spanish speaking country who is learning English. In order to play the work back, it is necessary to have a VoiceBox IIconnected to the computer. Thus anyone who wants to use your speaking or singing program would also have to have the synthesizer.

Documentation: An eighteen page manual is supplied. This is sufficient to use the program but it could be more informative. New computer owners would have a difficult time at first.

Skill level required: Intermediate computer user.
Reviewer: Richard E. Devore

Product Name: Mail List
Equip. req'd: Atari 400/800/1200XL with 48K Atari BASIC disk drive printer
Price: $\$ 39.95$
Manufacturer: MMG Micro Software
P.O. Box 131

Marlboro, NJ 07746
Description: Mail List program. This program will handle up to 600 names per disk. It uses one complete sector per record and allows up to 125 characters per record. Each
record may contain separate entries for "First Name"," "Last Name", "Address 1", "Address 2", "City", "'State", ''Zip Code", "Reference 1 ", and "Reference 2 ". Features a random access search which claims to find any file on the disk in less than 1 second. Supports use of up to 4 disk drives and multiple files on the same or different data disks.

Pluses: Menu driven and easy to use. Sorts on "Name 2", "City", "State", "Zip Code", "Reference 1" in ascending or descending order. Prints labels with or without the two reference fields.

Minuses: You MUST read the directions carefully and be sure to use OPTION 7-END to end the session or your records may be lost.

Documentation: A twelve page booklet gives adequate instructions for the programs use.

Skill level required: Any computer owner with the prerequisite equipment.

Reviewer: Richard E. Devore
AICRO

C64-FORTH

 for the Commodore 64 FORTH SOFTWARE FOR THE COMMODORE 64C64-FORTH (TM) for the Commodore 64-\$99.95

- Fig For th-79 implementation with extensions
- Full feature screen editor and macro assembler
- Trace feature for easy debugging
- $320 \times 200,2$ color bit mapped graphics
- 16 color sprite and character graphics
- Compatible with VIC peripherals including disks, data set, modem, printer and cartridges
- Extensive 144 page manual with examples and application screens
- "SAVETURNKEY" normally allows application program distribution without licensing or royalties
C64-XTEND (TM) FORTH Extension for C64-FORTH - $\$ 59.95$ (Requires original C64-FORTH copy)
- Fully compatible floating point package including arithmetic, relational, logical and transcendental functions
- Floating point range of $1 \mathrm{E}+38$ to $2 \mathrm{E}-39$
- String extensions including LEFT\$, RIGHT $\$$, and MID\$
- BCD functions for 10 digit numbers including multiply, divide, and percentage. BCD numbers may by used for DOLLAR.CENTS calculations without the round-off error inherent in BASIC real numbers.
- Special words are provided for inputting and outputting DOLLAR.CENTS values
- Detailed manual with examples and applications screens (Commodore 64 is a trademark of Commodore)
TO ORDER - Specify disk or cassette version
- Check, money order, bank card, COD's add $\$ 1.50$ - Add $\$ 4.00$ postage and handling in USA and Canada - Mass. orders add 5% sales tax
- Foreign orders add 20% shipping and handling - Dealer inquiries welcome

PERFORMANCE MICRO PRODUCTS

770 Dedham Street. S-2 Canton, MA 02021 (617) 828-1209

CoCo To Smartmodem

By John Kelty

The Radio Shack Color Computer is certainly my favorite personnel computer, but the RS-232 connections are not exactly what I had in mind when I read that it had a serial interface (how many other RS-232 interfaces do you know of that use the data input line as the printer busy?). In any case, there are ways around these things, and to connect the Hayes Smart Modem to the CoCo, I have written this BASIC program (including a few POKES \mid to change the RS-232 input/ status line response. With this change, the many automatic features of this fantastic modem can be programmed from Color Computer BASIC.

I am presently using a " 64 K " CoCo with Extended Disk Color BASIC, two disks, and the "Solution'" (from Frank Hogg Labs). Since the program is fairly simple, I am sure it can be modified for whatever CoCo configuration you have. Most of the lines that are optional are listed as comments.

The interface cable is made with a DIN plug at the CoCo end and a male DB-25P connector at the Smartmodem end. The pin connections are described early in the program listing. You need

4-conductor cable and I have used as long as about 25 feet without any problems. It is convenient however, to have the Smartmodem near your computer setup, then you can hear the dialup and the send and receive carrier tones when you begin communicating. There are many programming options you can choose with the Hayes Smartmodem, and these are extremely well documented in the excellent Owner's Manual. (In case you have not guessed, I consider the Hayes Smartmodem my best computing purchase to date!].

The BASIC program is menu driven for ease of operation. If you BREAK and then RUN the program again, the Smartmodem functions are cleared ("AT Z" is sent to the modem). To write to the Hayes simply make the CoCo printer busy signal constantly high. I do this with software (remember that the modem is sending back information on that line as the data to CoCol by programming the internal 6821 bit to be an output. Not to worry! Remember somebody said that you cannot type in anything into your Color Computer that will damage it (See some past Rainbow editorials). This programming is accomplished with the following:

A65314: BA1

POKE B,51: POKE A,1: POKE B,55:
POKE A, 4

Now you can talk to your modem just like it was a printer with PRINT-2, "your modem command".

To get back into the CoCo original RS-232 mode, use the following:
(using same A and B as above) POKE B,1: POKE A,0: POKE B,55: POKE A,5
Now you can use a communications package such as the Radio Shack Videotex or a similar program (see MODCOMM elsewhere in the CoCo section) to communicate (the Videotex will set the data rate at 300 Baud as required by the Hayes 300 model).

I know little to nothing of amateur radio operations, but with these POKES, a few lines of BASIC, and possibly some hardware, the Hayes Smartmodem can be made to send morse code. Auxiliary relay contacts are provided in the modem to key the transmitter automatically. It cannot however, be made to directly receive morse code. Diagrams describing the modem to radio interface are found in the Smartmodem User Manual Appendix H . Obviously some nice commercial terminal packages exist for the CoCo, but this program has made me happy for some time now. With the Hayes Smartmodem and the Color Computer, I am sure you will also enjoy computer communications.

NCRO'

```
Listing 1
'SMARTIOB
' KELTY ENGINEERING
'URITTEN BY JOHN R, KELTY
'LIMCOLN, NEBRASKA 68585
',
'USE THIS PROGRAM TO COMMECT
' AMD PROGRAM THE HAYES
Sal Shatthoder To The radio
90 'SHACK COLOR COAPUTER.
190 .
11 'THE CONNECTOR CABLE SHOULD
120 'CONMECT TO THE RS-232 PORT
130 'IN THE FOLLOMIMG WAY:
\(140^{\prime}\)
150 'COLOR DIN hayes connecter
169.
179, 1 CARRIER DETECT 8
189: 2 RECEIVED DATA 3
190 , 3 SIGMAL GROUNG 7
209. 4 TRANSHITTED DATA 2
210 ,
229 'THE 399 GAUD HAYES MODEM
23 g ' MAY BE USED HITH VIDEGTEX
243 'OR ANY OTHER TERHINAL
259 PACKAGE THAT ALLOHS THE
201 "hayes 70 RUN at 300 bavd.
27.
289' THE HAYES HILL DPERATE
298 'LOCALLY AT HIGHER RATES
330 ' BUT NO HIGHER THAN 309
318 ' WHILE ON LIME.
\(32{ }^{\prime}\)
339 'SEE YOUR USER'S MANUAL
```

349 'FROM HAYES FOR DETAILS.
350

37\%,

$39{ }^{3}$,
$478 \mathrm{~A}=65314: B=A+1: P 0 K E 158,188$
410 POXEB 51 : $P D K E A_{1}$: PDKEB , 55 ; POXEA, 4
42 DIM M 5 (5), SN $5(9)$

44 'FOR CASSETTE OPERATION YOU
458 'CAN DELETE THE DISK CHECK,
$46{ }^{\circ}$ 'gUT IT COULD BE LEFT IN:
47. 'WITH OR HITHOUT DISKS.

490 DK=1: CASSETTE OPTIOA
569 IF PEEK (49152) $=68$ AND $\operatorname{PEEK}(49153)=75$ THEN DK=1
$505{ }^{\circ}$ CHECK FOR RS DISK ROH

529 PRINT" BY: RELTY ENGIMEERING'

54 PFINT:PRINT'CONNECT CABLES TO MODEH,
545 PRINT'COMPUTER AND FHONE COMPANY."
559 PRINT: PRINT:PRINT" (BREAK AND LIST THIS PROGFAK TO"
555 PRINT ${ }^{*}$ SEE CAELE DETAILS).:
560 PRINT:PRINT:IMPUT ${ }^{\text {PFRESSS }}$ ENTER WHEN REAEY: A\$
579 CLS:PRINT
589 PFINTI-2, "AT l': 'CLEAR MODEM

609 'MENU
61月 M $\$(1)=1$ ALTO DIALING ${ }^{*}$
628 Ms (2) $=$ "AUTO ANSHERING"
630 FOR $\mathrm{S}=1$ T0 2

```
640 PKINTS;M$(S)
650 NEXT S
66% FRINT;PRINT:FRINT"SELECT ONE OF THE AEOVE'
670 A $=INKEY $:IF A $="'THEN679
689 ON VAL (A$) GOSUE 700,1316
69060T0 510
```



```
710 'AUTD DIALING RDUTINE
```



```
730:
740 CLS:PRINT:PRINTM$(1)
750 PFINT:PRINT:PRINT'1 DIAL A SAVED NUMEER*
76 FFINT"2 DIAL A NEH NUMEER"
776 A$=1NKEY$:IFA$= '1THEN779
78% ONVAL(A$) GOTO899,980
79960T0740
```



```
810 HM=2:'HON MANY NUMBERS
820 'TO CHANGE THIS LIST, MAKE HM=HOW MANY & YOU WANT TO
    LIST (MAX OF 9).
830 'THEN INSERT LINES SIMILAR TO THOSE BELOH WITH YOUR
NUMBERS AND NAMES.
84I CLS:FRINT'NLMEERS YOU CAN EASILY CALL':PRINT
850 SN$(1)="1 XXX-XXXX A FRIEND"
869 SN$(2)= '2 XXX-XXX-XXXX A BRS
870 FOF K=1 TO HM
880 PRINT SN$(K)
890 NEXT
909 PRINT:PRINT"SELECT ONE OF THE ABOYE"
91g FRINT'(EREAK AND LIST TO EDIT THESE NUMBERS).*
926 A$=INKEY$:IF A$='TTHEN92年
930 NB=VAL\A$)
946 IF NBCI OR NB\HM THEN 806
950 F $=MID$(SN$ (NE),5,16)
960 6OSUB1:9%
970 RETURN
```



```
990 PRINT:PRINT"DIALING A NEH NUHBER"
10@O PRINT:PRINT"TYPE IN THE PHONE NUHBER THAT*
1095 PFINT"YDU WISH TO CALL."
1010 PRINT EXAMPLES;"
1929 PRINT'1-80G-XXX-XXXX LONG DISTANCE
1030 PRINT'112-B06-XXX-XXXX FROH LINCOLN
1040 PFINT 'XXX-XXXX LOCAL CALL
1050 PFINT
1060 LINE INPUT"TYPE DESIRED NUMBER';P$
1070 GOSUB 1990
1980 RETURN
```



```
1100 'NUMBER KNOWN AT THIS POINT
1110 'READY TD DIAL
1120 PRINTA-2, "AT FG D*P$
1130 'ENAHLE RS232 RECEIVE BIT
1140 FOKEG,1:POKEA, 0:POKEB,55:POKEA,5
1145 5TOP
1150 IF DK=0 THEN 1230
```



```
1179 'YOU CAM LOADM ANY TERMINAL
1180 'PACKAGE THAT YOU HISH BY
1190 'EDITING THE NEXT LINES.
1290 LOADH "MODCDM"
121G FOR D=1 TO 2000:NEXT D:`OISK HOTOR DELAY
1220 'EXEC
1230 CLS:PFINT:PRINT'YOU NEED TO USE YOUR OHN"
1249 FRINT"TERMINAL PACKAGE AT THIS POINT"
1250 PRINT* (SUCH AS VIDEOTEX AND OTHERS).:
1269 PFINT"IF YOU HAD PRELOADED A TERMINAL"
1279 PRINT"PACKAGE HRITTEN IN MACHINE"
1280 PRINT"LAMGUAGE, THEN SIMPLY TYPE EXEC"
1290 PRINT'AND PRESS ENTER.'
130860102040
131G`\#################
1320 'AUTO ANSHER ROUTINE
```



```
134日 *
1350 CLS:PRINT:PRINTM$(2)
1360 PRINT
1370'MENU
```

```
1380 AN$(1)="D0 NOT ANSHER"
```

1380 AN$(1)="D0 NOT ANSHER"
1390 AN$(2)="ANSMER IMHEDIATELY"
1390 AN$(2)="ANSMER IMHEDIATELY"
1493 AN$(3)="ANSWER AFTER XX KINGS"
1493 AN$(3)="ANSWER AFTER XX KINGS"
1410 FDR SA=1 TD 3
1410 FDR SA=1 TD 3
1420 PRINTSA; AN$ (SA)
1420 PRINTSA; AN\$ (SA)
1430 NEXT SA
1430 NEXT SA
1440 PRINT:PRINT:PRINT'SELECT ONE OF THE ABDVE'
1440 PRINT:PRINT:PRINT'SELECT ONE OF THE ABDVE'
1450 A \$=]NKEY \$:IF A \$="THEN 145%
1450 A \$=]NKEY \$:IF A $="THEN 145%
1460 CLS:PRINT:PRINT" "H$(2)
1460 CLS:PRINT:PRINT" "H$(2)
1470 ON VAL (A$) 60SUE 1490,1560,1720
1470 ON VAL (A\$) 60SUE 1490,1560,1720
1480 60TO 1316

```
1480 60TO 1316
```



```
1500 'DD NDT ANSMER
```

1500 'DD NDT ANSMER
1519 PRINT:PRINT' *\&t"AN$(1)"t%%'
1519 PRINT:PRINT' *&t"AN$(1)"t%%'
1520 PFIMT:PRINT"THE SHART MODEK ANSHER FUNCTIOA"
1520 PFIMT:PRINT"THE SHART MODEK ANSHER FUNCTIOA"
153 PRINT"IS DISABLED."
153 PRINT"IS DISABLED."
1540 PRINT\#-2, "AT 5%=%'
1540 PRINT\#-2, "AT 5%=%'
155060T0 2440

```
155060T0 2440
```



```
1570 'AMSMER IMMEDIATELY
```

1570 'AMSMER IMMEDIATELY
1589 PRINT" *\&"AN$(2)"#4%"
1589 PRINT" *&"AN$(2)"\#4%"
1590 PRINT "THE SHART HODEM MILL AMSHER ALL"
1590 PRINT "THE SHART HODEM MILL AMSHER ALL"
160日 PRINT "CALLS IMMEDIATELY."
160日 PRINT "CALLS IMMEDIATELY."
1619 PRINT"USE THIS TD TRANSFER CALLS THAT"
1619 PRINT"USE THIS TD TRANSFER CALLS THAT"
1620 PRINT"ARE ALREADY IN PROGRESS bETHEEN'
1620 PRINT"ARE ALREADY IN PROGRESS bETHEEN'
1630 PRINT"THO INDIVIDUALS TO COMNUNICATION'
1630 PRINT"THO INDIVIDUALS TO COMNUNICATION'
1640 PRINT'EETWEEN THEIR COMPUTERS;"
1640 PRINT'EETWEEN THEIR COMPUTERS;"
165% GOSUB 1870
165% GOSUB 1870
1660 PRINT:-2,"AT"DP\&"A"
1660 PRINT:-2,"AT"DP\&"A"
1679 PRINT"AT THIS POINT YOU NEED TO RUN'
1679 PRINT"AT THIS POINT YOU NEED TO RUN'
1686 PRINT"OR EXEC YOUR OWN RECEIVER"
1686 PRINT"OR EXEC YOUR OWN RECEIVER"
1690 PRINT'PROGRAK TO INTERPRET THE'
1690 PRINT'PROGRAK TO INTERPRET THE'
17月要FINT'JMCOMING CALL.'
17月要FINT'JMCOMING CALL.'
171060T02840

```
171060T02840
```



```
1730 'AMSMEF AFTER XX RINGS
```

1730 'AMSMEF AFTER XX RINGS
1740 PRINT:PRINT" t\&*AN$(3)'t%#"
1740 PRINT:PRINT" t&*AN$(3)'t%\#"
1750 PRINT:PRINT"THE SNART MDDEH HILL ANSNER ALL"
1750 PRINT:PRINT"THE SNART MDDEH HILL ANSNER ALL"
1760 PRINT'CALLS AFTER THE NUMBER OF RING5*
1760 PRINT'CALLS AFTER THE NUMBER OF RING5*
1770 PRINT YON SELECT (FROH 1 TO 255 RINGS)*
1770 PRINT YON SELECT (FROH 1 TO 255 RINGS)*
1788 PRINT
1788 PRINT
1790 INPUT"HDM MANY RINGS (1 TO 255)";RG
1790 INPUT"HDM MANY RINGS (1 TO 255)";RG
189% RG=INT (RG)
189% RG=INT (RG)
1810 IF RG<I OR R63255 THEN 1793
1810 IF RG<I OR R63255 THEN 1793
1820 PRINT:PRINT'THE PHONE HILL BE ANSMERED'
1820 PRINT:PRINT'THE PHONE HILL BE ANSMERED'
1830 PRINT'AFTER"RG"RINGS,"
1830 PRINT'AFTER"RG"RINGS,"
1840 GOSUE 187%
1840 GOSUE 187%
1850 PRINT\#-2, "AT"DP$'50="RG
1850 PRINT#-2, "AT"DP$'50="RG
1860 PRINT:GOTO 1670

```
1860 PRINT:GOTO 1670
```



```
1889 'FULL OR HALF DIIPLEX
```

1889 'FULL OR HALF DIIPLEX
1890 FRINT:PRINT"DD YOU WANT FULL OR HALF DUPLEX?"
1890 FRINT:PRINT"DD YOU WANT FULL OR HALF DUPLEX?"
1999 PRINT'(IF YOU DO NDT KMOH, TRY HALF).'
1999 PRINT'(IF YOU DO NDT KMOH, TRY HALF).'
1918 PRINT:PKINT"1 FULL DUPLEX"
1918 PRINT:PKINT"1 FULL DUPLEX"
1929 PRINT"2 HALF DUPLEX'
1929 PRINT"2 HALF DUPLEX'
1930 A =INXEY$IF A$="'THEN1930
1930 A =INXEY$IF A$="'THEN1930
1948 ON VAL (A$) 60TO 195%,1990
1948 ON VAL (A$) 60TO 195%,1990
1950 'FULL DUPLEX
1950 'FULL DUPLEX
1966 DP$='FI'
1966 DP$='FI'
1971 PRINT: PRINT"FULL DUPLEX SELECTED."
1971 PRINT: PRINT"FULL DUPLEX SELECTED."
1980 60T0 2920
1980 60T0 2920
1999 'HALF DUPLEX
1999 'HALF DUPLEX
2006 DF \$= 'F%'
2006 DF \$= 'F%'
2010 PRINT:PRINT"HALF DUPLEX SELECTED."
2010 PRINT:PRINT"HALF DUPLEX SELECTED."
202% PRINT
202% PRINT
2930 RETURN
2930 RETURN
2040'\#
2040'\#
2950 'EXIT ROUTINE
2950 'EXIT ROUTINE
2060 'ENABLE RS232 RECEIVE EIT
2060 'ENABLE RS232 RECEIVE EIT
2070 PIIKEB, 1:PDKEA, ::POKEE, 55:POKEA,5
2070 PIIKEB, 1:PDKEA, ::POKEE, 55:POKEA,5
2489 PRINT:PRINT"THIS PROGRGM HAS ENDED."
2489 PRINT:PRINT"THIS PROGRGM HAS ENDED."
2990 EXEC
2990 EXEC
2100'TO UGE THIS PROGRAM HITH MODCOMM
2100'TO UGE THIS PROGRAM HITH MODCOMM
2110 'YOU MUST ADD A SNITCH TO THE MODEM
2110 'YOU MUST ADD A SNITCH TO THE MODEM
2120 'CABLE 50 THAT PIN 1 CAN BE CONNECTED
2120 'CABLE 50 THAT PIN 1 CAN BE CONNECTED
2130 'TO PIN 2 AFTER DIALING THE NUHBEK
2130 'TO PIN 2 AFTER DIALING THE NUHBEK
2140'SEE MODCOMM ARTICLE FOR EXPLAINATION
2140'SEE MODCOMM ARTICLE FOR EXPLAINATION
2150 ERD

```
2150 ERD
```

reason or timing will be wrong and data will probably be lost.

The hardware configuration of the RS-232C I/O port is as follows:

Pin	Purpose
1	Carrier detect - 2
	PIA1 Interrupt of Data in - Bit 0 of Address \&HFF22 on PIA1
3	Ground Data out - Bit 1 of Address \&HFF20 on PIA1

As the interrupt is currently wired (pin 1), it is useless for modem communication. The carrier detect just checks for carrier on the modem. If carrier exists, the interrupt is active |carrier is the medium that actually transmits the data over the phone lines). This would mean that communication must be totally software controlled. Better use of this interrupt would enhance the computers ability to communicate to a mainframe.

An interrupt can be used to force the MPU to a service routine. For instance, the computer can be busy doing anything and still be programmmed so that when an interrupt occurs, it will drop what it is doing and go to a vector address that will service the interrupt. After servicing the interrupt, it can then return to exactly what it was doing before the interrupt. Since data coming onto the computer will always be at random intervals, I wanted to use the interrupt line to bring in the data. I did this simply by tieing the data in line to the interrupt so that when a bit enters the computer, it will force an interrupt. This is a very simple technique.

I suggest that you first purchase a new serial I/O cable from Radio Shack. This cable should be used only for modem to modem communication. Select one end and lift a small tab out of its slot which will allow you to pull back the outer shield. The inner shield can now be separated which will bare the wires. Cut the wire to pin 1 (the pins are numbered on the front) and solder a small piece of wire from pin 1 to pin 2. After putting it all back together, mark the modified end. This end will be the one that plugs into the CoCo. We are now ready to start on the software.
least 16 K of memory, if you use an assembler package.

The CoCo use the Peripheral Interface Adapter (PIA) to communicate to external devices. While the PIA is an excellent device, it was actually designed for parallel communication. When it is used for serial communication (for instance with the RS-232C), the information must be passed to the adapter one bit at a time. Timing loops must be designed to wait the proper bit time for baud rate timing.

There is also a drawback in the software. The processor must be totally dedicated to input or output at the time of communication, so a great deal of processing time is wasted. For instance, if the processor is bringing in information from the RS-232C I/O port, it cannot be interrupted for any

Software

Without the use of the interrupt, the data in line would need continual checking. The interrupt significantly reduces the software needed for communication. I will first discuss the output routine and then the input. Most of the programming of the PIA is done on power up of the computer so nothing more is needed on that.

Lines 1700-1900 are the transmit routine. All that is needed to transmit is a store command to the address \&HFF20.The data is held in register A of the MPU as shown in the DATAOT subroutine. Bit 0 is then shifted into the carry bit with the LSRA command. This is followed by two rotate left commands that position the bit into the transmit location of the B register. The B register is then stored into \&HFF20 which transmits the data. After transmitting the entire byte, two stop bits are normally transmitted which are logic ones. Often one of the stop bits is not used. Also, some systems use parity, so if the program listed here does not work, check with your systems people to get what is needed.

You should note the branch to the subroutine WAIT in DATAOT. This is the baud rate timer. This routine can be used for both transmit and receive, and is currently set for 300 baud. For reasons I will explain later, it cannot be set for a baud rate higher than 300 in the program listed here.

The loop value for the baud rate timer is found by the following steps. First, find the cycle time of the CoCo by dividing the clock time (. 895 MHz) into one. Second, find the baud rate time by dividing the baud rate 1300 baud) into one. Third, divide the computer cycle time into the baud rate time to find the number of cycles for each bit time. Finally, the wait loop takes exactly 8 cycles, so after taking you the overhead (about 10 cycles), divide the above value by eight and the answer is the time for one bit wait. This procedure works for any baud rate.

Before discussing the receive technique, I will talk about how to set up the interrupt routine. Lines 640-720 show the routine that prepares the computer for interrupts. Bit 0 is forced high in address \&HFF21. This is the control address for the A side of PIA1. By forcing the bit zero high, the interrupt is activated when CA1 is No. 68 - January 1984
forced low by the peripheral. The FIRQ interrupt is tied to the PIA so the jump vector address is in $\& \mathrm{H} 110$ and \&H111. These addresses are loaded with the start address of the subroutine DATAIN which is the service routine for the interrupt. The final job of the initializing routine is to able the interrupt in the condition code register so that the interrupt will be recognized by the MPU. When an interrupt occurs, the MPU will go to addresses \&H110 and $\& \mathrm{H} 111$ to get the service routine address and will then execute it. After executing the service routine, and RTI command will return the processor to the point before the interrupt.

Subroutine DATAIN (lines 1230-1610 works just the reverse of subroutine DATAOT. The first thing that needs to be done when entering the subroutine is mask any interrupts. If this is not done, the computer will start interrupting interrupts as data comes into the computer. Another thing that needs to be done upon entering the routine is to save the state of all registers. The FIRQ interrupt will only save the program count and condition code register, so the rest of the registers must be saved to assure that nothing will be lost when returning.

The HBWAIT routine is a half bit wait. It is necessary to center the reception so that slight errors in the timing will not matter., Address \&HFF22 is the data address for receive. The data is in bit 0 and after a load of the data register, two rotate commands are needed to position the data in the A register. The RORB moves the data into the carry bit and the second shifts the data into the A register. Since the interrupt is the CA1, it is necessary to read the PIA data register A (\&HFF20) to clear then interrupt. This should be done just before returning.

A further comment needs to be made on interrupts if using a program pack for assembly. The program pack forces a continual interrupt that cannot be cleared. If this is not disabled, the program cannot be executed with the pack installed because the interrupt will always be active. The simplest way to disable the interrupt is by putting scotch tape over pins 7 and 8 of the program pack. These pins can be found by viewing the pack from the top. Hold it with the plug at the top and points 7 and 8 are the first ones on the top and bottom with copper runs from the right side. You can tell if you have the proper
end because just next to pin 7 is the 5
volt pin which is slightly indented. After installing the program pack, it can be executed by typing EXEC 49152.

The Program

The program has a few features that have not yet been mentioned. It will output nearly the full spectrum of control characters. The downward arrow acts as the control key. It has a backspace key that when used with the shift key, will output the delete/rub character.Both lower and upper case characters are recognized, displayed and output (lower case letters have a dark background). By using the shift and clear keys, the program will be exited. Without the shift key, the clear key outputs the escape character. The break key will output the control C character. Shift zero will set the keyboard to lower case characters and output upper case only when the shift key is used.

This program does have a few weaknesses. The program cannot send and receive data at the same time. This would take a great deal of software and has little value so I did not put it in. I did, however, mask the interrupts going into the data out routine. This will allow the operator to transmit data even if a long receive message is coming in. One or two characters may be lost, however, on receive.

There will be some difficulty in increasing the baud rate on this program. Screen control and scrolling are done during the two stop bit times. Since screen control takes a great deal of time, any increase in the baud rate will result in garbage on there screen during scroll. As it was, I had to reduce the half bit wait to get the screen control in. If it is necessary to communicate at a higher baud rate, the received information will have to be buffered and displayed when the processor has more time.

The program, as listed here, is just one use of the Color Computer's ability to communicate to mainframe. Other uses could be for preloaded programs for later transmissions, downloading from a computer or use as an intelligent terminal. Happy computing! NCRO

[^4]

A VOX Input For Your Color Computer

A discussion of subroutines that allow sound as a form of input.

All Sound Subroutines require:

TRS-80 Color Computer with cassette. Some routines require Extended BASIC.

By Sean Moyer

While waiting for a particularly long program to cassette load during one of my late night programming sessions, I began to ponder the possibility of voice control for my Color Computer. Visions of external amplifiers and analog to digital converters danced through my mind. Next to dance through my mind were visions of the price tags that accompanied these pieces of equipment. I was about to abandon this line of thought when my attention was caught by the steady hiss of the program loading in. It dawned on me that I probably had everything I needed right in front of me. I realized that in order for a program to load in from the cassette player, the input from the player had to affect any number of memory locations in the area of memory devoted to I/O. All I needed was a source of sound for the cassette player and a program to look through the area of memory devoted to I / O. I found the range of memory addresses devoted to I/O in
the Color Computers Owner's Manual. I developed the program in listing 1 to look through each address, pausing momentarily at each one.

For noise, I grabbed the nearest music cassette I had on hand, put it in the Color Computer's cassette recorder and pressed play. I ran my program, sat back and waited. My wait was a short one. At memory location 65312, I noticed the content display flickering rapidly. I recorded the location, and letting the program run, I found several more locations showing identical behavior. The change on the display was binary two for the low state, three for the high.

All that remained now, was to substitute my voice for the prerecorded input. The procedure for accomplishing this varies, depending on the type of cassette you own. For the older black model, with built in microphone, simply remove the plug from the "MIC" jack on the left side of the unit. Next, open the cassette compartment and remove the cassette. Now, carefully inspect the upper lefthand comer of the compartment. There will be a small stud there. Push the stud toward the back of the unit. While holding it down, press Record and Play.

The process is the same for the more recent models with one exception. You must plug an external microphone into the "MIC" jack. With this accomplished, the recorder is now sending your amplified voice to the computer.

To test the procedure, turn up the volume on your monitor and type AUDIO ON. If the procedure was completed correctly, you should hear your amplified voice issuing from your television speaker. With the preliminary set up now complete, we are ready to discuss three subroutines that should get you sufficiently familiar with the basics of sound input to help you to develop your own sound subroutines.

The first subroutine is a voice activated binary input. When the program receives a sound, the routine is turned " ON^{\prime} ". When the next sound is recognized, the routine is turned "OFF", and will alternate "ON" and "OFF" with each additional sound.

Specifically, the program will check memory location 65312. If this location contains a 2 , the low state, it returns and checks again. If the location contains a 3 , indicating the presence of sound, the program immediately prints $O N$. The next sequence in the routine is a FOR/NEXT loop. This delay loop debounces the switch, which is to say it allows the sound that activated the switch to end. Without this delay the voicing of a word such as ON or OFF would be sufficiently long as to turn the routine off and on several times in succession. The memory location is checked again in the manner previosly mentioned, and when a sound is recognized, the program prints OFF and goes through a debouncing loop. The program returns to
the beginning and repeates the cycle.
If the program fails to operate and you determine it has been entered correctly, reset the computer. Under special circumstances, such as the use of the AUDIO ON or PLAY commands, the contents of memory location 65312 may be other than 2 or 3 . If the program gets number other than 2 or 3 , it will crash. Resetting the computer should restore the program to operational order.

This is the least complex and least useful of the three routines presented here. It serves basically as a primer for the next two programs. The next two routines are more complex, and they should prove more interesting and useful as well.

The next routine we will discuss is the voice operated dictation shown in listing 3 . This program is designed to record whatever you say, deleting the long periods of silence between phrases. To run this program, leave a blank cassette in the recorder before you press record and play.

The program begins by checking memory location 65312. When a sound is recognized, the recorder is activated by the MOTOR ON command. The delay loop that follows serves a somewhat different purpose than that in the VOX binary input. This loop prevents the recorder from shutting down during the short pauses between words in a sentence, or even shorter silences in the words themselves. The program begins the count from 1 to 300, and checks memory location 65312 inside the loop. If at any time a sound is recognized, the program begins the count again from 1. This way, if the pause is short, the loop reinitiates, leaving the motor on. If the pause is long, the routine will complete the loop, and the recorder will be shut down using the MOTOR OFF command. Finally, the program returns to the beginning and waits for the next sound.

If this program is used for dictation a small preliminary sound, such as a finger snap, might prove necessary for total legibility. When the first sound is sensed the motor is activated, but it takes a fraction of a second for the motor to reach proper recording speed. This often causes the first word to be lost. A finger snap would activate the motor and allow it to reach recording speed in time for the first word to be recorded. A preliminary sound would not be needed if the program were used, for instance, to monitor an empty room
for activity.
The third and final program differs from the first two in that instead of a straight binary input, it uses a sampling routine to approximate an analog input. This program displays the analog approximation in PMODE 4 graphics, oscilliscope style. This is the only routine that requires Extended BASIC. In addition, because the program uses a real time graphics display, I have included the high speed poke |POKE 65495,0). If the high speed poke does not work on your system simply remove it from the program. This will slow down the routine, though the results should still be acceptable.

The routine begins with the high speed poke and then prepares the graphics screen. This is followed by a threesome of nested FOR/NEXT loops. The outer loop controls the initial vertical placement of each trace line. The next loop in controls the rate at which the trace sweeps horizontaly across the screen. The innermost loop is the heart of the program. This is the sampling routine. For every point on the horizontal sweep, memory location 65312 is sampled six times.

The routine sums all six samples, and stores the sum in variable T . It then subtracts a constant (12 in this case), so that six samples taken during a period of total silence would give T a value of zero. T is then multiplied by a constant (4) to give the graphic display proper amplitude. The grahics display comes directly after the sampling routine.

These routines will help you understand the workings of the cassette audio input port, and hopefully they will be useful to you in your program library.

You may contact Sean Moyer at, 1825 South 17th Street, Fargo, ND 51830.

Llsting 1

10 REM PROERAM 1
20 REM MEMORY SEARCH
30 REM BY SEAN MOYER
40 CLS
50 REM I IS ADDRESS RAMGE
$60 \mathrm{FOF} I=65280 \mathrm{TO} 65535$
70 REM J IS OF TIMES EACH
80 REM ADDRESS IS DISPLAYED
90 FOR J $=17075$
IOM FEM DISELAYS ADDRESS ANO
110 REM CONTENT CENTER SCREEN
120 PRINTE224, I, PEEK(I)
130 NETT
140 NEXT I

Listing 2

10 REM LISTING 2
20 MEM VIV DINARY IMPUT
30 RE: EY SEAN MOYER
40 REM
50 SEM CHECKS FDR SOUAD
50 IF PEEK (65312) $=3$ THEN 70 ELSE 60
70 PRINTRAN
30 fEM DELAY LOCP
90 REM DEEDUMCES SHITCH
100 FOR I $=1$ TO 200 ; MEIT I
110 PEM CHECYS FOR SOUND
120 IF PEEK $(65312)=3$ THEN 130 ELSE 120
130 PRINTMOFF"
140 SCh DEBOUNCES EWITCH
150 FOR $I=170200$: MEXT I
150 GQTO 50

Listing 3

10 REM LISTING 3
20 REM VOY DICTATION
30 REM BY SEAN MOYER
40 PEM
50 REM CHECKS FOR GOUND
60 IF PEEK (65312) $=3$ THEN DO ELSE 60
70 REM ACTMATES RECDRDER
90 mator on
OO REM DELAY LOOP /CONTINUITY
100 FOR I = 170300
110 REM IF DICTATION IN PRCCESS
120 FEE REINTTIATES DELAY LOOF
130 IF PEEK $\{65312\}=3$ THEN 100
140 MEXT 1
150 GEM DEACTIVATES RECORDER
160 MOTOR OFF
170607050

Listing 4

10 REM LISTINE 4
20 REM OSCMLISCDPE
30 FEM EY SEAN MOYER
40 REM
50 REM HIGH SPEED FQKE MAY NDT
SO REM HOFK B SEME SYSTEMS
70 REM REMOUE IF IWDPERAELE
80 FOKE E5495.0
90 FEM PREPARE GRAPHICS SCREE
100 PMODE 4.1
110 SCREEA 1,1
120 PCLS
130 REM VERTICAL PLACEMENT LOOF
140 FOF $V=26$ TO 191 STEP 25
150 REM HORIIONTAL SUEEP
150 FOR $H=4$ TO 255 STEP 4
170 FEM SAMFLIIGG ROUTIME
$180 \mathrm{~T}=0$
190 FOR $1=1506$
$200 \mathrm{~T}=\mathrm{T}+\mathrm{PEEK}(65312)$
210 REXT !
220 FEM COFRECTION FBR
230 REM IEROIMG AND AMFLITUDE
$240 T=(T-12)+4$
250 EEM GRAPHICS DISFLAY
260 LINE $(H-4, V-T D)-(H, V-T), P S E T$
270 TD=T
280 NEXT H
290 HEXT
300 EOTO 50

IMCRO

by John Steiner

Last month we looked at how easy it is to install drives on the CoCo . This month, lets take a look at something new that you may be interested in running with your new disk drives. The OS-9 operating system has finally been released, and is now available in local Radio Shack stores. OS-9 is one of the most powerful disk operating systems I have seen, and provides new power for CoCo , and new capabilities. In addition to OS-9, Radio Shack is selling BASIC-09, a very powerful supplement to Extended BASIC.

The OS-9 package, which retails for $\$ 69.95$, comes in a gray box, and contains four operating manuals, Getting Started With OS-9; OS-9 Commands; OS-9 Program Development; and OS-9 Technical Information. OS-9 requires a 64 K CoCo and at least one disk drive. See the July and August, 1983 CoCo Bits for instructions on upgrading your machine to 64 K . There are two disks included in the package, an OS-9 Boot disk, and an OS-9 system master. The OS-9 boot disk allows users with 1.0 disk disk ROMs to boot OS-9. CoCo users with 1.1 disk ROM may just load the system master and type 'DOS'. The new DOS command will take care of selecting 64 K mode and other details.

The boot disk has one other utility of value to all CoCo disk users, a disk timing utility. This program reads and displays the RPM of the selected drive. The Getting Started... manual lists accepted speeds, however an addendum letter corrects those speeds to a range of acceptable RPM from 295.5 to 304.5 RPM. If your drive is out of time, Radio Shack recommends you send it in to be adjusted, however the TEC drive included with the RS disk system is easy to adjust yourself.

All you have to do is shut off the computer, unplug the drive from the AC outlet, remove the screws holding the case and lift the case off. On the left side of the drive (facing front), you will find the motor drive belt and pulleys. Just below these, there is a small cir-
cuit board with a small adjustment potentiometer. Plug in the drive unit, install and run the disk timing program and adjust the potentiometer with a small screwdriver until the drive speed is within range. When done, turn off the computer, unplug the drive and reinstall the case.

Now that we are done with that little diversion, back to OS-9. Other included utilities include an editor and assembler for writing your own OS-9 software. For those who would like to know how the DOS interfaces with your CoCo , the operating system resides between any applications programs and languages you may run, and the computer. All programs and languages are designed to use OS-9 to access the disk, printer, terminal, keyboard and video display.

Who needs OS-9? Anyone who wants to run applications programs written using the operating system, and anyone who might be interested in running other languages besides BASIC. By the time you read this, you should be able to buy PASCAL, C, and COBOL configured to run on CoCo . If you write your own machine language software, you will like the thorough documentation of the operating system, and the ease with which you can implement and access disk files, and other CoCo accessories without having to write your own device drivers or trying to decipher the ROM.

OS-9 is in charge of managing the disk directory, and keeping tabs on how the computer can manage its time and system resources. OS-9 creates one of the most sophisticated disk directories in the computer industry in that it allows directories within a directory. For example, you can make a directory of accounting files called ACCOUNTS, and within the directory you might have files called ledger, receivables, payables, etc. For that matter, you could have a sub directory in the ACCOUNTS directory that could have its own set of files. If you enter DIR at
the OS-9 prompt, you will see a list of directories and files stored under the main operating system directory. Entering DIR /D0/ACCOUNTS will list all the files and sub directories stored in the ACCOUNTS directory. To keep files and directories separate, OS-9 users have developed the convention of using upper case characters when naming characters and lower case characters when naming files. Eight letter filenames are a thing of the past and you are allowed from 1 to 29 characters.

The directory system builds files in a tree or bierarchical format and you move from directory to directory with the CHD [change data directory] or CHX (change execution directory) commands. CHD /D0/ACCOUNTS will move you to the ACCOUNTS directory and all commands that contain any default options will default to the ACCOUNTS directory. The whole process is a lot easier to understand than explain, and the manuals have several examples that allow you to understand how to create and delete directories.

In addition to the multiple level filing system, OS-9 is multiuser and multitasking. In the Color Computer implementation, you can configure the RS-232 port as a terminal and someone can use the accounting package from a terminal while you are running customer files from the main CoCo keyboard. A security system can be implemented that allows users to have private and public files, and files can be read or write protected. You have the capacity of private passwords for up to 65,535 users. Most of us don't even know that many people.

Multitasking allows the user to run more than one task at a time. For example, you might ask OS-9 to list a file using the command LIST /D1/customer
$/ P$ \&. LIST is a program that will display the output of a file on the video display. In this case, the file "customer". Options include /D1 for drive one, /P redirects output from the video display to the printer and the \& (ampersand) tells OS-9 to do this as a background task. This means that the prompt will return to the display, and keyboard control will be restored so that you may continue with other tasks. OS-9 will share time between the printing task you just gave it and any other tasks you decide to give it. The only limit to the number of tasks
you ask the computer to do at one time is the available memory space.

The computer will share tasks in a priority basis, and you may assign a higher priority for jobs you want done more quickly. OS-9 uses a hardware clock to divide time into slices, and allot more time slices to tasks that have a higher priority. By the way, when you sign on to OS-9, you can enter the time and date, and the time will remain accurate, even with disk I/O as the software does not allow interruption of the time clock for disk I/O. You can use the clock in program output for any purpose desired.

One of the major advantages of OS-9 is its device independent I/O system. Only one I/O routine is needed with several drivers written to support the devices being used. OS-9 normally defaults to input from the keyboard and output to the video display, however it is easy to redirect input and output as required. Devices that are supported in the CoCo implementation are:

Drives 0 to 3
Keyboard
Video display
Serial printer
RS-232 terminal
Joysticks

As an example, you might redirect input from the keyboard to drive 1 , and output from the display to the printer.

OS-9 is powerful, and complex, and I have a big project to become proficient in its use during the cold North Dakota winter. This overview will hopefully give you some idea of the new found power in the Color Computer. You don't have to hang your head anymore when someone asks "Why did you buy that "toy" computer.

Over the next few months we will take other looks at OS-9 and its features. Next month we will look at BASIC09, and see what features and advantages you get for your hundred dollars. We will also take a look at two more CoCo word processors, Nelson's VIP Writer, and Elite*Word. MCRO

You may contact John at 508 Fourth Ave., N.W., Riverside, ND 58078.

SPECTRUM

32K RAM Button 2.99
NANOS Reference Card........ \$ 3.99
64K RAM Button 4.99
Coco Editor Assembler. 6.95
Coco Tech Manual 7.95
16K RAM Chips 9.95
Coco Secrets Revealed Book 14.95
LED On/Off Indicator 14.95
Coco Light Pen. 19.95
ATARI Joystick Interface 19.95
Video Interface Kit 24.95
16K-32K Upgrade Kit 25.95
6883 SAM Chip 29.95
6809E CPU Chip 29.95
Basic ROM 1.1 36.00
64K RAM Chips 49.95
MARK DATA Keyboard 69.95
BOTEK Printer Interface 69.95
Extended Basic ROM 84.00
Disk Controller 139.95
COLOR COMPUTERS \$ CALL
Call or Write for FREE CatalogSPECTRUM PROJECTS
93-15 86th Dr Woodhaven, New York 11421Add Sales Tax \& $\$ 3.00$ for S / H- Dealer/Club Inquires Invited -
212 441-2807
It pays to write for MICRO!
Win the esteem of your colleagues - Gain recognition as a computerist - See your programs and ideas in print - Feel satisfaction from helping others. Earn money for your work.

MICRO wants to continue to provide substantial material for the Serious Computerist. This must come from you the readers of MICRO who are actively invloved with understanding the inner workings of microcomputers, who experiment to find better ways of using microcomputers, who are developing new techniques, who are programming in assembler, FORTH, Pascal and other languages in addition to BASIC.
Writing for MICRO is easier than you think. If you can provide the programs and the basic information about how they work, our staff can help turn this 'rough' material into a polished article. Remember, in this business, everyone knows something of value, and nobody knows everything.
Request the Writer's Guide which covers many of the fundamentals of writing for MICRO.

Product Name: Disk interface/ROM pack extender
Equip. req'd: TRS-80 Color Computer Disk system
Price:
Manufacturer:
$\$ 29.95+\$ 3.00$ shipping
Spectrum Projects

93-15 86th Drive
Woodhaven, NY 11421
Description: The Spectrum Projects disk interface and extender cable can be a useful accessory for the Color Computer. It allows the disk or program ROM pack to be located up to three feet away from the side of the computer. This high quality cable has a gold plated connector on each end that mates with the connectors on the computer and ROM packs.

Pluses: Makes positioning of drives more convenient at the desk, allows the computer to have only a ribbon cable extending from the computer, rather than a large ROM pack.

Minuses: Unfortunately, it may not work with all drives. My MPI works correctly with the cable but my Tandy unit has problems. If I put drive one as drive zero, then the cable seems to work. It is possible that my drive needs adjustment for the longer length of cable.

Documentation: None needed or provided. The cable is marked TOP on both sides, care must be taken that the cable is inserted correctly.

Skill level required: The cable is easy to install by even a novice.

Reviewer: John Steiner

Product Name:	The Stripper
Equip. req'd:	TRS-80 Color Computer
Price:	$\$ 7.95$
Manufacturer:	Eigen Systems
	P.O. Box 10234
	Austin, TX 78766

Description: The Stripper is a programmers utility for the Color Computer that will compress or "pack" a BASIC program. Stripper has three options, remove remarks, pack lines, and remove spaces. Any one or all three options may be exercised.

Pluses: The packed program will take up less memory, and may operate slightly faster. The utility normally loads into graphics memory, thus freeing all other memory for the packing operation, and your BASIC program. One of the lowest cost utilities I've seen, and well worth the money.

Minuses: You cannot edit, or otherwise change a line packed program. The program must be saved in an unpacked format, should you decide to modify or edit it.

Documentation: Four pages of notes describe the operation of the program thoroughly.

Skill level required: No advanced skill level is required to use the program.

Reviewer: John Steiner

Product Name: CCP-1 Serial-Parallel Interface
Equip. req'd: TRS-80 Color Computer
Price: $\quad \$ 69.96+$ shipping
Manufacturer: Botek Instruments
4949 Hampshire
Utica, MI 48087

Description: Botek Instruments serial-parallel interface provides the TRS-80 Color Computer and TDP-100 with a standard Centronics style parallel interface. The interface, housed in a 3 in . by 6 in . mini-box, is easily connected to the CoCo RS-232 port. A parallel cable is provided that connects the interface to the printer. A third cable leads to a small AC power supply. Baud rates of 300 to 9600 baud are switch selectable on the front of the interface. POKE 150,1 will allow CoCo to access the printer at 9600 baud. The unit can be configured to ROM 1.0 or ROM 1.1 by just changing a jumper.

Pluses: The interface is easily installed, and requires little attention, except to change baud rates. If the printer you have is capable of +5 volts on pin 18 of the printer connector, you may remove the AC supply and power the interface from your printer. This option is not available on my Epson printer, so I could not test it.

Minuses: None noted.
Documentation: A single page instruction sheet describes hook-up and operation of the unit. In addition, a separate sheet contains a complete interface schematic.

Skill level required: The unit should be easy to install for anyone familiar with computer and printer installations.

Reviewer: John Steiner

Product Name:	BASIC Aid
Equip. req'd:	TRS-80 Color Computer
Price:	$\$ 34.95$

Manufacturer: Eigen Systems
P.O. Box 10234

Austin, TX 78766
Description: BASIC Aid is a ROM based programmers utility for the Color Computer. Commands may be entered using two keystrokes, and keys may be redefined as required. A plastic overlay is included to remind you of the key codes. Automatic line numbering is supported, and lines may be moved from one part of a program to another. A MERGE utility allows two BASIC programs to be combined.

Pluses: BASIC Aid works with all CoCo's, 4 K on up. ROM pack construction requires only 227 bytes of RAM to hold the key define table. An auto space command prints a space after the defined key for maximum readability. Auto space can be shut off should you require memory conservation. Programs to be merged may be binary, and do not have to be stored in ASCII format unlike many utilities. BASIC Aid can be turned off and on from the keyboard if desired.

Minuses: BASIC Aid automatically allocates the top 227 bytes of available RAM for its key define table, which is not relocatable. As a result, you will have to relocate any machine-language routines that must be used with your program, assuming they are relocatable. In addition, all CLEAR commands must be set to protect the top 227 bytes, or you may accidentally overwrite the table.

Documentation: The instruction book is excellent, easy to understand, and well written. The only conflict I could find was in the MOVE utility. The manual asks for line numbers in the format 100 , but on my machine, 100 turned into 10000 until I entered the numbers with leading zeroes, as 00100.

Skill level required: The program is easy to use, and makes programming a much easier task. No extra skills are required of the programmer.

Reviewer: John Steiner

Product Name:	CCEAD Color Computer Editor/ Assembler/Debugger
Equip. req'd:	TRS-80 Color Computer $\$ 6.95+\$ 3.00$ shipping
Price:	Eigen Systems Manufacturer: AO Box 10234

Description: This is a BASIC program that provides the user with a machine-language software development system. You receive two versions: a $12 \mathrm{~K}+$ commented source listing and a stripped 7600 -byte running version. It assembles and stores code in the unused CoCo graphics pages.
(Continued on next page)

COMPLETE PRODUCT LINES FOR D.C. Hayes • HDE • Microsoft • Nashua • Okidata APPLE • FRANKLIN • IBM-PC/XT

We carry many products at competitive prices to expand these fine computers. Request Catalog No. AFP*

HDE hardware and software for ASK, DLC, OMNI-65 systems KIM replacement modules ($1 \mathrm{~K}-4 \mathrm{~K}$) and keyboards AIM-65 ($1 \mathrm{~K}-4 \mathrm{~K}$) and accessories. Request Catalog No. TASK*

Professional Workmanship	Apple	\bullet	Franklin	\bullet	Atari
Guaranteed Repairs	PET	\bullet			
Quick Turn-around	AIM	\bullet	SYM	\bullet	HDE

Perry Peripherals

*Catalogs

AFP $\$ 2.00$ TASK $\$ 1.50$ Catalog price refunded with first order

Repair Center 6 Brookhaven Drive
Rocky Point, NY 11778

Orders
P.O. Box 924

Miller Place NY 11764
(516) 744-6462

9AM-5PM Weekdays

Pluses: The program is inexpensive and easy to use. It allows you to "get your feet wet" in machine-language programming for little cost. The BASIC program is easily modified to the user's preference.

Minuses: The program is slow in assembly and allows only five directives; ORG, RMB, FCB, FDB, and EQU. No math is allowed in labels.

Documentation: A ten-page manual is provided to demonstrate the operation and use of CCEAD. Two sample programs are provided that assist in learning to use the software.

Skill level required: This program requires some knowledge of machine-language programming.

Reviewer: John Steiner

Product Name: SHRINK
Equip. req'd: Color Computer with 16 K memory
Price: $\quad \$ 15.00$ tape or disk
Manufacturer:
Star Kits
P. O. Box 209-N
Mt. Kisco, NY 10549

Description: SHRINK is another implementation of Eliza, the computerized psychologist. It is fun to use, but it is rather easily "fooled" into making somewhat irrelevant comments. It will run indefinitely and is a cute demo for parties, etc.

Pluses: SHRINK is a change of pace: you can relax while experimenting - an unusual use for a computer. Written in assembly language, it is somewhat faster than many other similar programs.

Minuses: A serious experimenter might wish for a more sophisticated implementation of this concept.

Documentation: A single page gives adequate instructions; once started, all you need to know is how to stop simply type "shut up"!

Skill level required: None.
Reviewer: Ralph Tenny

NOW - FULL POWER ASSEMBLY LANGUAGE!!
 GET THE VERSATILITY OF INDEPENDENTLY assembled relocatable subroutines with a RELOCATING LINKING LOADER

* For use with APPLE DOS TOOLKIT ASSEMBLER REL files
* Relocate and link up to 255 REL files
* Convenient specification of relocation parameters (output file, start address, REL file names, . . .) in text control file
- Comprehensive error reporting and recovery
- Memory map has module and entry point addresses to aid debugging
- Complete with user manual and disk example
- FAST - ten 256 byte REL files done in 30 SECS

RELOCATING LINKING LOADER W/MANUAL. $\$ 49.95$
MANUAL . $\$ 4.50$
Also - FAST-CRYPT - Available for APPLE and IBM Encrypt/decript any file with FAST-CRYPT
An efficient assembly language implementation of the DES
(Data Encryption Standard) algorithm
FAST-CRYPT WIMANUAL................................... . . $\$ 34.95$

KIWI SOFTWARE CO.
 P. O. BOX 218 m

Plainsboro, N.J. 08536
System requirements:
APPLE II, II + IIe (or compatabie) DOS $3.3 \mathrm{~W} / 48 \mathrm{~K}$
IBM-PC, XT (or compatable) PC, MS-DOS W/64K
IBM tm IBM CORP, APPLE tm APPLE COMPUTER, INC.
MS-DOS tm MICROSOFT CORP.

KIWI SOFTWARE does not copy protect its products send check or money order (N.J. residents add 6% sales tax)

Apple To Smartmodem

By John Kelty

Adapted for Apple by Phil Daley

This is an adaptation of my program for the Color Computer. The hardware requirements are the Hayes Smart Modem and an RS-232 communications interface. This program was specifically written with the CPS Multifunction card in slot 1 with the serial port assigned to slot 2 (the standard slot for communications). This program should be easily adaptable to other interfaces. See your interface manual for any necessary changes.

This fantastic modem can be programmed from Applesoft BASIC.

The interface cable is a standard communications cable - DB-25 to DB-25, with pin-for-pin connections. You need 12 -conductor cable and I have used as long as about 25 feet without any problems. It is convenient however, to have the Smartmodem near your computer setup, then you can hear the dialup and the send and receive carrier tones when you begin communicating. There are many programming options you can choose with the Hayes Smartmodem, and these are extremely well documented in the excellent Owner's Manual. (In case you have not guessed, I consider the Hayes Smartmodem my best computing purchase to date!).

The BASIC program is menu driven for ease of operation. If you BREAK and then RUN the program again, the Smartmodem functions are cleared ("AT Z " is sent to the modem). To write to the Hayes, merely access the slot (with PR\#2), and PRINT your commands. Now you can talk to your modem just like it was a printer with

PRINT "your modem command". To get back into the normal Apple mode use "PR\#0".

Now you can use a communications package such as DATA CAPTURE or a similar program to communicate with bulletin boards or data bases. The program includes a command to enable terminal mode on the CPS card, which will allow a dumb terminal communications setup.

I know little to nothing of amateur radio operations, but with a few lines of BASIC and possibly some hardware, the Hayes Smartmodem can be made to send morse code. Auxiliary relay contacts are provided in the modem to key the transmitter automatically. It cannot however, be made to directly receive morse code. Diagrams describing the modem to radio interface are found in the Smartmodem User Manual Appendix H. Obviously some nice commercial terminal packages exist for the Apple, but this program has made me happy for some time now. With the Hayes Smartmodem and the Apple Computer, I am sure you will also enjoy computer communications.

You'll Receive:

- MICRO Calc....a miniature spread-

 sheet program that makes complex, repetitive calculations a breeze.MASTER....a guessing game that teaches programming with random numbers and flags.

- VIC Clock....to teach you on.gosub tunction and character graphics.

Use this coupon or the postage paid card in this issue to order.

MICRO Books P.O. Box 6502, Chelmsford, MA 01824

\square YES, please rush \qquad copies of MASTERING YOUR VIC-20 (w/cassette), at only $\$ 19.95$ per copy (plus $\$ 2.00 \mathrm{~s} / \mathrm{h}, \mathrm{MA}$ res. add 5% sales tax).
My payment of \$ \qquad is enclosed. I'm paying by

CheckMO MC

NAME \qquad
ADDRESS \qquad
CITY \qquad STATE \qquad ZIP \qquad
\qquad
\qquad

Plus... music programming, string manipulation, sorting demonstrations, and more.

> Each Program Worth the Price of the Book!

Order your copy of MASTERING YOUR VIC-20

Today!

CALL ．．．．CALL \＄1599．00 \＄2099．00 $\$ 1999.00$ $\$ 2399.00$ $\mathbf{\$ 3 9 9 . 0 0}$ $\$ 499.00$ \＄699．00
$\$ 519.00$ $\$ 599.00$ $\$ 569.00$ $\$ 689.00$
$\$ 739.00$ $\$ 929.00$ 51039.00 ．．CALL S1099．00 ．$\$ 2699.00$ $\$ 1949.00$ $\$ 4695.00$ $\$ 4999.00$ $\$ 9199.00$
$\$ 3399.00$ CALL
 DRIVES
51／4＂320K Floppy．
．$\$ 249.00$ 5 Meg Hard w／Controller $\mathbf{\$ 1 3 9 9 . 0 0}$ 10 Meg Hard w／Controiler ．．．$\$ 1699.00$ 15 Meg Hard w／Controller ．．．$\$ 2095.00$ 20 Meg Hard w／Controller ．．．$\$ 2399.00$ AMOEK 310A Amber Monito $\$ 169.00$ DxY 100 Plotter．．．．．．．．．．．．．．．$\$ 599.00$ 3399.00
AST RESEARCH，INC． Six Pak Plus．．．from ．．．．．．．．．$\$ 279.00$
Combo Plus il．．．from ．．．．．．．$\$ 279.00$ Combo Plus II．．．from Mega Plus．．．from ．．．．．．$\$ 309.00$ ／O Plus II．．．from．．．．．．．．．．．．．．．$\$ 139.00$
GUADRAM Quadink Quadboard．．．as low as ．．．．
Quad 512 Plus．．．as low as ． $\$ 549.00$ Plus．．．as low as ．．．$\$ 249.00$ Quadcolor．．．as low as .$\$ 249.00$
.$\$ 219.00$ Chrallegraph ．．．．．．．．．．．．．．．．．$\$ 89.00$ ．． 589.00
MICRD PRD
WordStar／Mail Merge．．．．．．．．．$\$ 369.0$
InfoStar ．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 299.0$
SpellStar ．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 99.0$
CalcStar．．．．．．．．．．．．．．．．．．．．．．．．．

Crosstalk．．．．．．．．．．．．．．．．．．．．$\$ 105.00$

 MICROSOFTMultiplan

Write：	APPLE	I日M
Graph：	79.00	89.00
Report：	79.00	89.00
File：	79.00	79.00
Solutions＂：as low as	79.00	89.00
		＂Call
		16.00

ASHTON－TATE
dBASE II

EasyWriter II

IUs
Easy
EasyFiler
$\$ 189.00$
$\$ 19.00$
1 st Class Mail／Form Letter $\$ 79.00$ The Home Accountant Plus ．．．$\$ 88.00$
1－2－3．．．．．．．．．．．．．．．．．．．．．．．．．．3319．00 PC Plus／The Boss．．．．．．．．．．．．$\$ 379.00$ VISICORP
M APPLE
VisiCalc 159.00
159.00
VisiCalc 4
249.00
269.00
VisiCalc－Advanced
VisiWord／Spell 199.00199 .00
VisiLink

VisiSchedule 199.00169 .00 $\begin{array}{ll}\text { Visidex } & 199.00199 .00\end{array}$ Visiplot VisiTerm $\begin{array}{lr}\text { Visiterm } & 135.00 \\ \text { Desktop Plan } & 75.00\end{array}$ | Desktop Plan $\quad 199.00169 .00$ |
| :--- | ---: | :--- | $\begin{array}{lll}\text { Bus．Forecast Model } \quad 75.00 & 75.00 \\ \text { Stretch Calc } & 75.00 & 75.00\end{array}$ $\begin{array}{lll}\text { Stretch Calc } & 75.00 & 75.00 \\ \text { VisiTutor Calc } & 59.00 & 59.00\end{array}$ $\begin{array}{llll}\text { Visitutor－Advanced } & \mathbf{7 5 . 0 0} & \mathbf{7 5 . 0 0}\end{array}$ $\begin{array}{llll}\text { Visitutor－Advanced } & 75.00 & 75.00 \\ \text { VisiTutor Word } & 59.00 & 59.00\end{array}$ Vision Calc $\quad 249.00$ $\begin{array}{ll}\text { Vision Graph } & 129.00 \\ \text { Vision Mouse } & 159.00\end{array}$

Vision Mouse
319.00

PRINTERS

MaC－550 PC $\mathrm{MBC}-555 \mathrm{PC}$ MBC 1100 MBC 1150 MBC 1200 MBC 1200 MBC 1250 FDD 3200－320K Drive FDD $6400-64 \mathrm{~K}$ D PR 5500 Printer．
 MONITORS
 AMDEK

300 Green．
300 Amber
310 Amber
Color 1 ．．．．
Color 1 Plus
Color $2 \ldots .$.
Color 2 Plus
Color $3 \ldots$.
Color $4 \ldots$.

12＂，Green

日MC

9191 reen HI－RES
GロRIL－A
12＂＇Green
$12^{\prime \prime}$ Ambe
NEC JB 1260 Graen．．．
JB 1201 Green．．．
JB 1205 Amber ．

NEC

 JB 1205 AmberJC 1215 Color
JC JC $\mathbf{1 2 1 6} \mathbf{R G B}$ ． GUAORAM Quadchrome．．．．．．．．．．． 12＂＇Green TAXAN 12＂＇Amber．．．
Taxan 1 RGB

4s
Pi 1，9＂Green．
Us
Pi 3，12＂Amber
Pi 4，9＂Amber
1400 Cotor

ZENITH

ZVM 122 Amber
ZVM 135 Color／RG
．$\$ 249.00$ $\$ 249.00$ $\$ 249.00$
$\$ 199.00$
$\$ 589.00$.$\$ 269.00$ $\$ 499.00$ $\$ 399.00$ $\$ 449.00$
$\$ 209.00$
$\$ 379.00$
.5679 .00
． 569.00
$\$ 999.00$
1499.00
.$\$ 1499.00$
．．．$\$ 99.99$
J－Cat．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
SmartCat 103．．．．．
SmartCat 103／212
212 AutoCat
Apple Cat II
212 Apple Cat．
Apple Cat 212 Upgrade．
Cat．
D－Cat
PC－Ca
ZT－1
ZENITH

APPLE INTERFACE

CARDBE EUFFEAB
Choose from PKASO，Orange Micro
MPC，MicroMax，Tymac，Quadram \＆
Practical Peripherals．

NEC
8023 Dot Matrix
NEC
8025 Dot Matrix．
.$\$ 379.00$ 8025 Dot Matrix．．．． $\$ 669.00$ 2050 Letter Quality ．．．．．．．．$\$ 999.00$ 3510 Serial／Letter Quality ．．．$\$ 1449.00$ 3530 Parallel／Letter Quality ．．．$\$ 1499.00$ 3550 IBM／Letter Quality．．．$\$ 1699.00$ 7710／7730 Serial／Parallel．．．\＄1949．00 ロКIロАтA 82，83，84，92，93，2350， 2410 ．．．CALL SMITHCORONA TP－ 2
$\$ 449.00$
Tractor Feed
$\$ 119.00$
500 Lets
550 Leter Quality ．．．．．．．．．．．．$\$ 469.00$
STAR
Gemini 10X $\$ 699.00$

Gemini P15
．$\$ 299.00$ Delta 10 ．．．．．．．．．．．．．．．．．．．．．$\$ 449.00$ Serial Board ．．．．．．．．．．．．．．．．．．．．．．$\$ 559.00$
TOSHIEA．．．．．．．．．．．．．．．CALL
TRANBTAR．．．．．．．．．．．CALL
PRINTER CABLES Available for Atari，Commodore，IBM， Apple，Epson，Kaypro，Televideo，Frank－ lin，Eagle，Sanyo，Osborne，NEC Zenith and manyothers．We supplyall your computer needs！

PAPE円 BUPPLIES 1000 shts． $81 / 2 \times 11$ Tractor Paper．．．19．99 1000 shts． $141 / 2 \times 11$ Tractor Paper．．$\$ 24.99$ 1000 shts． $141 / 2 \times 11$ Tractor Paper．$\$ 24.99$

FCOMPUTER MAIL ORDER

ACE 1000 Color Computer ACE Family Pack System ACE PRO PLUS System． ACE 1200 Ottice M9mt．System

CALL
CALL CALL

APPLE／FRANKLIN DISK ORIVES MICPO－ECI

A2	
A40	
A70	
C2 Controller． C47 Controller	

$\mathbf{\$ 2 1 9 . 0 0}$
$\mathbf{\$ 2 9 9 . 0 0}$ $\$ 299.00$
$\mathbf{5 3 1 9 . 0 0}$ $\$ 79.00$
$\$ 89.00$ $\$ 89.00$

Elite 1
RANA
Elite 2
$\$ 279.00$ $\$ 389.00$
$\$ 569.00$

APPLE HE STARTEP PACK 64 K Apple He，Disk Drive $\&$ Controller， 80 Column Card，Monitor II \＆DOS 3.3 COMPLETE ．

CBMCBM$8096 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	

We stock a full inventory of software for Commodore，such as： Artworx．Broderbund，Commercial Data，Creative Software， Epyx，HES，MicroSpec，Nufekop，Romox，Sirius，Synapse， Thorn EMI，Tronix，UMI，Victory，Spinnaker，Rainbow \＆Timeworks！

CALL FOR DETAILS！

HANDHELD COMPUTERS

41 CV

NEC

PC－8201 Personal Computer ．．．$\$ 599.00$ PC． 8221 A Thermal Printer．．．$\$ 149.00$ PC－ 8281 A Oata Recorder ．．．．$\$ 99.00$ PC－8201－06 8K RAM Chips．．．$\$ 105.00$ PC－8206A 32K RAM Cartridge..$\$ 329.00$

PC－1500A．．．© 1 E5．99 PC－1 250A ．．．．．sв日．99

CE． 125 Printer／Cassette．．．．$\$ 128.99$ CE－150 Color Printer／Cassette．．．．$\$ 171.99$ CE－155 日K RAM ．．．．．．．．．．．．．．．$\$ 93.99$ CE 181 16K RAM ．．．．．．．．．．．．．$\$ 134.99$ CE 500 ROM Library ．．．．．．．．．．$\$ 29.99$

TIMEX／SINCLAIR

 1000| Timex／Sinclair 1000 | 5.99 |
| :---: | :---: |
| 16K Memory． | ．$\$ 29.99$ |
| 2040 Printer | ． 599.99 |
| VuCalc | ．$\$ 17.99$ |
| Mindware Printer． | ． 599.99 |

GOOXL．．．．．．\＄189
8ロOXL．．．．．．． $\boldsymbol{\text { s299 }}$
1 200×L
．．．．CALL 1400×1

．．．．．CALL

1010 Recorder ．．．．．．．．．．．．．．． $\mathbf{5 7 4 . 0 0}$		
1020	Color Pri	249.00
Dot Matrix Printer．．．．$\$ 44$		
1027 Letter Quality ．．．．．．．．$\$ 299.00$		
1050 Disk Drive．．．．．．．．．．．．		
－30	Pa	\＄12．00
Cx40 Joystick．．．．．．．．．．		
Cx80		
CX85	Keypad	\＄105．00
4003 Assorted Education．．．． 547.00		
4011	Star R	\＄3
4012 Missile Command ．．．．． $\mathbf{\$ 2 9 . 0 0}$		
4013 Asteroids ．．．．．．．．．．．．．．$\$ 29.00$5049 VisiCalc.......... .159 .00		
7097 Logo．．．．．．．．．．．．．．．．．．． 57		
	En	\＄69．00
7102 Arcade Champ ．．．．．．．．．$\$ 75.00$		
8026	Dig Dug	\＄33．00
8030 E．T．Phone Home ．．．．$\$ 333.00$		
	Donkey Kons	\＄39．00
8036 Atari Writer．．．．．．．．．．．．$\$ 79.0$		
8040 Donkey Kon9，Jr．．．．．$\$ 39.00$		
8043 Ms．PacMan ．．．．．．．．．．．．．．$\$ 39.00$8044 Joust $\ldots ~$$\$ 39.00$		

DISKETTES
MAXELL
$5 \% / 4$ MD－1 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \$ 29.00$ S．${ }^{\prime \prime}$ FD－1（SS／OO）．．．．．．．．．．．．．．．．．．．．．．．$\$ 39.00$

SS／00）
VEREATIM
$51 / /^{\prime \prime}$ SS／DO
$51 / 4^{"}$ OS／OD
ELEPHANT
$51 /{ }^{\prime \prime}$ SS／SD
$51 / 4^{\prime \prime}$ SS／DD
$5 / 1 / 4$ SS／DD
$51 / 4^{" 1}$ DS／OD
HEAD
5 $1 / 4$＂Disk Head Cleaner． $\$ 39.00$.549 .00
．$\$ 26.99$ ．$\$ 36.99$
．$\$ 18.49$ $\$ 22.99$.$\$ 28.99$

DISK HOLOEPS

INNOVATIVE CONCEPTB
Filip－n－File 10
Flip－n－File 50
$\begin{array}{r}. . \$ 3.99 \\ \hline \\ \hline 17.99\end{array}$
Flip－n－File（400／800；0M）Holder．． 17.99
LUK ENTERPRISEE
Atari Letter Pertect－Disk（40／80）．．$\$ 79.99$ Atari Letter Perfect－FOM（40 col）．．．． $\mathbf{\$ 7 9 . 9 9}$ Atan Letter Perfect－ROM（EO col）．．．$\$ 79.99$ Atari Data Perfect－FOM（ 80 col）．．．．．$\$ 79.99$ Atari Spell Perfect－DISK ．．．．．$\$ 59.99$ Atari Utility／MailMerge ．．．．．．$\$ 21.00$ Apple Letter Pertect．．．．．．．．．．．．．．$\$ 99.00$ Apple Letter Perfect．．．．．．．．．．．．$\$ 99.00$ Apple Data Perfect ．．．．．．．．．．．．． 575.00 Apple Lower Case Generator ．．．．．．$\$ 19.00$

PERCOM

AT 88－S1	．$\$ 329.00$
AT 88－A2	\＄259．00
AT 88－52	． 5529.00
AT 88－S1PD	\＄429．00
AT 88－DDA	．$\$ 119.00$
RFD 40－S1	\＄449．00
RFD 40－A1	\＄269．00
RFO 40－S2	\＄699．00
RFD 44－S1	． 5539.00
$\begin{aligned} & \text { RFD 44-S2 } \\ & \text { TEXAS } \end{aligned}$	$\begin{aligned} & \$ 869.00 \\ & \text { TS } \end{aligned}$
TX 99－S1	．$\$ 279.00$
1000	．$\$ 319.00$
AT－02．	． 5389.00
MEMP	9ロS
Axion 32K	．$\$ 59.00$
Axion 48K	\＄99．00
Axlon 128K．	．\＄299．00
Intec 32K	\＄59．00
Intec 48K	\＄85．00
Iritec 64K	\＄99．00
Intec Real Ti	\＄29．00

ALIEN VOICE EOX Atari．．
$\$ 119.00$ Apple． \qquad

	KOALA PAD
Atari．	．．\＄75．00
Apple	\＄85．00
IBM	．$\$ 95.00$
CBM 64	\＄75．00

CONTAOLLERSE
JOYsTICKS wica Joystick 3－way Joystick．． Famous Red Ball． Power Grip． BOSS Joystick ．．．．．．． Apple Trak Ball Apple Adapter Apple Analog ．

KRAFT

Joystick
Atari Single Fire． Apple Paddles IBM Paddles BM Joystick aMiga
3100 Single \qquad
3101 Pair
Joyboard
Atari Trak Ball
Apple Joystick
TG

Apple Trak Ball
．$\$ 21.99$
$\mathbf{5 2 2} .99$
$\mathbf{\$ 2 3 . 9 9}$
$\$ 23.99$
$\$ 21.99$.$\$ 21.99$
.$\$ 17.99$ $\$ 34.99$ $\$ 54.99$ $\mathbf{\$ 1 5 . 9 9}$
.$\$ 37.99$
$\$ 41.99$
$\$ 41.99$
.$\$ 12.99$
.$\$ 12.99$
.$\$ 15.99$
.$\$ 15.99$
.$\$ 34.99$
$\mathbf{\$ 3 4 . 9 9}$
$\$ 46.99$
.$\$ 13.99$
.$\$ 19.99$
.$\$ 37.99$
.$\$ 47.99$
.547 .99
.$\$ 47.99$

```
840 FORK = 1 TO H
850 PRIMT SMS(K?
860 NEXT
870 PRINT : PRINT "SELECT ONE OF THE ABONE"
880 FRINT "(BREAK AND LIST TO EDIT THESE NU
    MBERS )."
890 GET AS
900 NE = VAL (AS)
910 IF NB ( 1 OR NB ) HM THEN }75
920 PS = KIDS (SNS(NB ),5,16)
930 GOSUB 1070
940 RETURK
```



```
960 PRINT : PRINT "DIALING A NEH MUMBER"
970 FRINT : PRINT "TYPE IN THE PHONE NUMBER
        THAT"
9 8 0 ~ P R I N T ~ " Y O U ~ U I S H ~ T O ~ C A L L . " ~ '
9 9 0 ~ P R I N T ~ " E X A M F L E S : " ~
1000 PRINT " 1-800-XXX-XXXX LONG. DISTANCE
1010 PRINT "112-800-XXX-XXXX FROM LINLOLK
1020 PRINT "XXX-XX'XX LOCAL CALL
1030 PRINT
1040 INPUT "TYPE DESIRED NUMBER";P$
1050 GOSUE 1070
1060 RETURN
```



```
1080 REN NONBER KNOUN AT THIS POINT
1090 REK READY TO DIAL
1100 FRIKT DS"PRH2": PRINT "AT T FO D"P$
1101 REN TOUCH TONE, IF YOU WANT PULSE, I
        SE 'P'
1105 REM CHAMGE THE 'O' TO '1' FOR FULL DUS
        PLEX
1110 PRINT [$"PRHO"
```



```
1130 REK YOU CAN RUN ANY TERMIMAL
1140 REM PACKAGE THAT YOUS WISH BY
1150 REM EDITIMG THE NEXT LINES.
1160 REM PRINT IUS"RUN TERMIHAL PROGRAH"
1170 HOME : PRINT : PRINT "YOU NEED TO USE
        YOUR OWN"
1180 PRINT "TERKINAL PACKAGE AT THIS POINT"
1190 FRINT "(SUCH AS UIDEOTEX ANTU OTHERS)."
1200 COTO }197
```



```
1220 REM AUTO ANSHER ROUTINE
```



```
1240 REM
1250 HOME : PRINT : PRINT K$(2)
1260 FRINT
1270 REM MEMU
1280 AHS(1) = "JO NOT ANSUER"
1290 AN*(2) = "ANSHEF LPMEDIATELY"
1300 ANS (3) = "ANSWER AFTER XK RINGS"
1310 FOR SA = 1 TO 3
1320 PRINT SA;AN$(SA)
1330 NEXT SA
1340 FRINT: PRINT : PRINT "SELECT ONE OF T
        HE ABOVE"
1350 GET AS
1360 HOHE : PRINT : PRINT " "H$(2)
1370 ON VAL (AS) GOSLE 1390,1470,1640
1380 COTO 1210
```



```
1400 REN DO NOT ANSNER
1410 FRINT: PRINT "* 㫫"AMS(1)"凉"
1420 PRINT : PRINT "THE SHART YODEM AMSNER
        FUNCTION"
1430 PRINT "IS DISARLED."
1440 PRINT DS"PR#2": PRINT "AT SO=0"
1450 FRINT DS"PKH0"
1460 COTO 1970
```



```
1480 REM ANSNER IHNEDIATELY
1490 PRINT" 植"AM$(2)"餢"
```

1500 PRINT＂THE SHART HODEH WILL ANSNER ALL
1510 PRINT＂CALLS IMMEDIATELY．＂
1520 ＂PRINT＂ISE THIS TO TRANSFER CALLS THAT
1530 print＂are already in progress between
1540 PRINT＂TMO IKBIVIDUALS TO COMuniCATIO ＂
1550 PRRINT＂BETUEEN THEIR COHPUTERS．＂
1560 COSUB 1800
1570 PRINT D\＄＂PR＂2＂：PRINT＂AT＂DPs＂A＂
1580 PRINT DS＂PRINO＂
1590 PRINT＂AT THIS POINT YOU MEED TO RLAN＂
1600 PRINT＂OR EXEC YOUR OUN REEEIVER＂
1610 PRINT＂PRDGRGY TO INTERPRET THE＂
1620 PRINT＂INCOMIMG CALL．＂
1630 GOTO 1970
1640 REK
1650 REK ANSNER AFTER XX RINGS

1670 PRINT ：PRINT WTHE SHART MODEK YILL AM SIER ALL＂
1680 PRINT＂CALLS AFTER THE MMBER OF RIMGS
1690 PRINT＂YOU SELECT（FROK 1 TO 255 RIMGS $y^{\prime \prime}$
1700 PRINT
1710 INPUT＂HOU MANY RINGS（1 TO 255 ）＂；RG
1720 RG $=$ INT（RG）
1730 IF RG（ 1 DR RG） 255 THER 1710
1740 PRINT ：PRINT＂THE FHONE WILL BE AKSHE RED＂
1750 PRINT＂AFTER＂RG＂RIMGS．＂
1760 COSUB 1800
1770 PRINT IS＂PR＂2＂：PRINT＂AT＂DPS＂ $50=$＂RG
1780 PRINT DS＂PRUN＂
1790 PRINT ：COTO 1590

1810 REJ FIUL OR HALF DUPLEX
1820 PRIMT ：PRINT＂DO YOU WANT FULL OR HAL F DAPLEX？＂
1830 ＂PRIKT＂（IF YOU DO NOT KWOH，TRY HALF）．
1840 PRINT ：PRINT＂ 1 FIUL DUPLEX＂
1850 PRINT＂2 HALF TUPLEX＂
1860 GET AS
1870 ON VAL（AS）GOTO 1880， 1920
1880 REK FLUL DUFLEX
$1890 \mathrm{DP} \$=$＂F1＂
1900 PRINT ：PRRINT＂FULL DUPLEX SELECTED．＂
1910 COTO 1950
1920 REK HALF WUPLEX
1930 DFs＝＂FO＂
1940 PRINT ：PRINT＂HALF DUPLEX SELECTED．＂
1950 PRINT
1960 RETURN

1980 REM EXIT ROUTINE
1990 PRINT ：PRINT＂THIS PROGRAK HAS ENDED．
2000 PRINT＂THIS PROCRAY WILL GO INTO＂
2010 PRINT＂TERHINAL MODE IN 5 SECONDS＂

2020 PRINT＂TYPE＇CTRL－C＇FOR LOMER CASE＂
2030 PREINT＂TYPE＇CTRL－A＇FOR SENDING LIME FEEDS＂
2040 PRINT＂TYPE＇CTRL－R＇＇CTRL－X＇TO EXIT TERMIMAL HODE＂
2060 PRINT＂ \qquad
2065 FOR I $=1$ TO 10000：NEXT
2070 PRINT D\＄＂PRN12＂：PRINT CHR\＄（9）＂K＂
2080 REK THIS PUTS KOANTALK CPS CARII
2090 REK INTO HALF DUPLEX TERMIMAL HODE
2100 REF FDR FULL DUF＇LEX SUESTITUTE
2110 REK AN＇F＇FOR THE＇H＇IM ABOVE LINE
2120 PRINT DS＂FRKO＂：END
NCRO

Speediload

Enhanced

Apple DOS

By Enrico Colombini

Speedload

requires:
Apple II or Apple II + or Apple He 48 K or 64 K with disk drive(s) and DOS 3.3 (16 sectors).

This article describes how to build an enhanced version of Apple DOS 3.3 which performs all loading operations about four times faster then original DOS. The modified DOS is fully compatible with a 48 K slave DOS, including inner routines and addresses, excepted that it cannot format new diskettes for the first time.

Why Apple DOS Is So Slow

Since I started using Apple, I was puzzled by the apparently strange behaviour of the Disk Operating System. Why the DOS itself is loaded much faster than a binary file of equal length? A slave DOS 3.3 is loaded in less than 2 seconds. A file of equal size $(9.25 \mathrm{~K})$ is loaded in about 11 seconds. Even considering the time spent in looking at index and other file informations, there is still a great difference in loading times. With an ear at the head steppin-motor and a hand on the stopwatch, I measured the average trackloading time: about 3.70 seconds. If you consider that the disk rotates at five turns per second ja turn in 200 msec), you can see that the entire track passes under the head 3.70 by 5 , that is over 18 times! Why is it not possible to load the track in just one revolution of the diskette? Where is the theoretical limit? And the practical one? For the
answers, we must look at the Apple hardware and at the inner structure of DOS.

Apple does not have a specialized disk controller chip as Western Digital 1791 or similar device. It has instead a little masterpiece of engineering: a "state machine" based on a PROM and a shift register. This circuit performs the hardware encoding/decoding operations to and from the R/W electronics of the disk drive. But that simplicity has a cost: the encoding/decoding process is not complete. It just sends to or receives from the disk drive a stream of 6 -bit "nibbles". The remainder of the process, that is the nibbles-bytes conversion, has to be done by software.

Every track is organized as a stream of 16 sectors, 256 bytes each. In reading, the software conversion of a sector (342 nibbles to 256 bytes) takes about 10 msec . In theory, it is therefore possible to read the entire track (200 msec) and then decode it (10 msec by $16=160 \mathrm{msec}$ in only 360 msec . But this implies a great waste of space for the nibblized-track buffer: 342 by 16 $=5472$ bytes of memory! It is not acceptable.

A more realistic approach is to read and decode one sector at a time. That is, read a sector and decode it, read the next sector and decode it, and so on. Ok, but what is the NEXT sector? While the program decodes the first

Raise your Apple's IQ gurive Times A Year!

Try a NIBBLE!

Here's what some of our Readers say:
\square "Certainly the best magazine on the Apple!"
\square "Impressed with the quality and content."
\square "Programs remarkably easy to enter."
\square "I'll be a subscriber for life!"
\square 'Your service is fantastic . . . as a matter of fact, I'm amazed!"

Try a NIBBLE!

NIBBLE is focused completely on the Apple and Applesoft-compatible computers.
Buy NIBBLE through your local Apple Dealer or subscribe now with the Coupon or Order Card in this issue.

You'll want Back Issues Too!

Here are some examples of programs you can get:
The Investor-Stock Tracking, Reporting, and Graphing.
Recipe Box-Kitchen/Menu Management made Fun
The Librarian-Auto Logging and Retrieval of your Disks.
Designer/Illustrator-Art/Design Creation and Composition with Graphics.
Machine Language Editor-Quick and Easy Aid for Typing and Changing M / L Programs.

And Much . . . Much More!
NIBBLE will become a permanent part of your Reference Library. Discover why 95% of NIBBLE Readers save every issue Join more than 120,000 Apple/Ace users who say: 'NIBBLE IS TERRIFIC!"

Note
Domestic U S. First Class subscription rate is $\$ 51.95$

- Canada Air Mail subscripton rate is $\$ 59.95$
\square Outside the U.S. and Canada Air Mail subscription rate is $\$ 89.95$ All payments must be in U.S. funds drawn on a U.S. bank.

Appie is a registered trademark of Apple Computer, Inc. $A C E{ }^{\bar{E}}$ is a registered trademark of Franklin Computer, Inc.

Tips 'N Techniques
Little known programming Tricks you can Use.
Disassembly Lines
Utilities
Superchargers for Basic, DOS, Printing, and More.
Games
Arcade Fun you can Type and Run.

A One Year Subscription Brings You 12 Issues With:

Over \$500 of Programs for your Home, Business, Education and Entertainment. Complete Program Listings with Instructions.
Comprehensive Articles that show what each program does, how to use it and how to type it into your Apple, Franklin ACE or other Applesoft-compatible computer.
Regular Features for the Beginner and Expert.

On The Scene

The Latest New Software/Hardware Releases.

Products! Inside and Out

Comprehensive Product Reviews.

Education Corner

Programs that help make Learning Fun.

An Expert reveals the mysteries of Applesoft.

SUBSCRIBE NOW AND SAVE $\$ 12.00$ OFF THE COVER PRICE

Box 325, Lincoln, MA 01773 (617) 259-9710
I'Il try nibble!
Enctosed is my \$26.95 (for 12 is sues)
(Outside U.S., see special note on this page.)
\square check \square money order \square bill me (U.S. only)
Your subscription will begin with the next issue published after receipt of your check/money order.

Card \# please paint clearly Expires \qquad
Signature
please paint
Name \qquad
Address \qquad
City
State

Figure 1: Sector interleaving

Access order by R/W head of disk drive $\left.{ }^{11}\right]$

0123456789 A B C D E F Physical sector order
07 E6D5C4B3A2918F Logical sector order
sector, the next physical sector (the second) passes under the head and cannot be read. Since the decoding time (10 msec) is shorter than the sector duration (12 msec approximately including header), the program can safely read the third sector. After that, it loses the fourth, reads the fifth and so on.

It is so possible to read only 8 sectors per disk revolution. Starting with the disk head at the beginning of the first sector, it takes two turns 1400 msec) to read the entire track: reducing the buffer from 5472 bytes to only 342, we lost about 10% of speed. A very good compromise. Considering a head positioning and first sector finding time of 150 msec 〈average], we can expect to read a track in about 550 msec , or .55 seconds. The DOS track loading time is near to this value, so we can consider this time (550 msec) as the practical speed limit.

Well, Apple can load a track in .55 seconds. Yet we do not know why DOS cannot. We must find the reason in the deepest depths of DOS itself.

The Cost of Structured Programming

I like structured programming. It improves program development, testing, debugging and reading. The program occupies less memory and is much more easy to modify, even by another programmer. I make large use of it in every language, including Basic, and I am greatly rewarded: my work is much easier. All these advantages are achieved at only one cost: the program runs slower. How much slower it runs, it depends on the level of structuring. More deep the structure, more slow the program. For some time-critical programs, structuring to the deepest level can be a great disadvantage. For these programs, the programmer must find the better compromise, that is the level where it must stop structuring and start "spaghetti-programming".

Apple DOS is a deeply structured program. It is very well written and can be easily adapted to different diskette organization, that is shorter sectors, more tracks, etc. At the moment, however, the 3.3 version is widely accepted and the coming of another version is very unlikely, unless the DOS is wholly changed for new disk drives. We can therefore see if the slowness depends on the DOS structure and, if it is so, see if it is possible to reduce the structure level and so speed up the operations.

Apple DOS is made mainly of three blocks, in order of depth:

- The external level, which is the interface with Basic, monitor and user. - The file manager, which performs all operations on diskette files.
- The RWTS, which physically reads/writes a single disk sector.

This is (roughly) the sequence of operations when Basic inputs a string from a sequential text file, already opened:

- Basic calls input routine for getting the first character. Since READ command is in effect, DOS intercepts the call.
- DOS external level calls file manager asking for a single character from active input file.
- File manager calls its internal routine "read one byte" (RD1BYT).
- RD1BYT calls a routine which, if a byte is not already available, finds and loads the next sector in the buffer [using RWTS].
- RD1BYT gets the requested byte from the buffer.
- RD1BYT calls a routine which increments the pointer (offset) in current record. In case of sequential files, records are of course one byte long. Since end of record is reached, the record counter is incremented and the offset is reset to zero.
- RD1BYT calls another routine which increments the POSITION file pointer. After that, it returns with the wanted byte to main file manager routine.
- File manager returns to external level.
- External level returns to Basic with the first character.

The above procedure is repeated for every character requested by Basic.

Just a little confused by this simplified explanation? Well, think that all increments and calculations are done in 16 bit arithmetic and you may begin to understand why sequential files reading is so slow. But, you will ask, what has that to do with loading of Basic or binary files? It has since DOS, as I said, is highly structured: it loads these files using the same above described procedure, as if they would be text files! So, Basic and binary loading is very slow too.

The SPEEDLOAD Approach

How much is the wasted time, in terms of disk sectors? When DOS is loading a Basic or binary file, after calling RWTS for reading a sector it waits for a little less than $100 \mathrm{msec} ; 8$ sectors or half a track) before calling the RWTS again for the next wanted sector.

I must now explain another feature of Apple DOS: sector interleaving. Using RWTS driven by a fast routine, as it happens when loading DOS, it is possible to load a sector every two, according with our former analysis. Maximum speed can be achieved only if sectors are loaded in that order. In DOS 3.3 , every track is initialized with sectors in ascending order, that is starting with sector $\$ 0$ and ending with sector $\$ \mathrm{~F}$ (hex). But this is the physical sector order. Using a table called "interleaving table", DOS make use of the sectors as if they were in another order, the "logical order".

Figure 1 shows the correspondence between physical and logical sector numbers. The upper line represents the sector numbers in a track as they are physically written on the diskette during initialization process. The lower line shows the sector numbers as they are used by the DOS (the RWTS). DOS stores sectors in descending logical order, that is starting with sector $\$ \mathrm{~F}$ and proceeding towards sector $\$ 0$. Every sector is stored in the physical
sector located through the interleaving table. For example, logical sector $\$ F$ is stored in physical sector $\$ \mathrm{~F}$, logical \$E in physical $\$ 2$, $\$ \mathrm{D}$ in $\$ 4$ and so on, as stated by the table in fig. 1. As DOS always uses sectors in logical order, you can forget the upper line and look only at the lower line (logical order).

When loading DOS itself, after reading sector $\$ 7$ it must be decoded. During this operation, sector $\$ \mathrm{E}$ passes under the head, unnoticed. When RWTS is ready for reading sector $\$ 6$, it is just this sector which passes under the head, with very little delay. The loading time is thus optimized. The situation is very different when loading a Basic file (it is the same matter with a binary file): the time needed by the file manager for processing sector $\$ 7$ is so great that in the meanwhile sectors $\$ E, \$ 6, \$ D, \$ 5, \$ C, \$ 4, \$ B$ and $\$ 3$ pass under the head. When at last DOS is ready for reading sector $\$ 6$, that one is already passed by and it has to let sectors $\$ \mathrm{~A}, \$ 2, \$ 9, \$ 1, \$ 8, \$ \mathrm{~F}, \$ 0, \$ 7$ and $\$ \mathrm{E}$ pass under the R / W head before it can at last read sector $\$ 6.17$ sectors to wait: a very long time!

In the book Bag of tricks by Don Worth and Peter Lechner (published by Quality Software) you can find a similar description of the problem. The authors call the time wasted in waiting the next sector to read "rotational delay" and the time wasted in processing a sector "file manager overhead". Searching for a solution, they discarded (rightly) the idea of modifying the interleaving table, because DOS and diskettes thus created were incompatible with standard ones. They suggest to modify the physical sectors order, in such a way that 8 sectors lay between two logical consecutive sectors. It is a good idea, but it has some disadvantages. First, it requires to re-init the diskette. Second, the majority of copy programs, and the more reliable ones, will destroy the work and restore the standard sector order on the copy. Third, all that work can achieve only a 45% gain in loading speed, in the best case. If we might read a sector every two, as in the DOS loading, we can achieve a much greater improvement. But this implies rewriting part of file manager. Well, if there is no other way, we must follow this one.

There is a problem: after loading and decoding a sector, there is no time for copying it in memory at the right place. It were therefore necessary to read it directly in memory. But this is

Figure 2: Approximate binary file loading times (in seconds)

File size	Normal DOS	Speedload DOS
1K (1024 bytes)	3.1	
2K (2048 bytes $)$	4.2	2.5
4K (4096 bytes $)$	6.5	3.7
8K (8192 bytes $)$	9.8	3.9
16K (16384 bytes)	17.6	5.7
32K (32768 bytes)	32.3	8.3

not ever possible, as some sectors are only partially written and unwanted bytes must not be placed in memory. Looking closer at the file structure, it can be seen that only the first and the last sector does not contain only bytes to be copied in memory. The first because it begins with address/length informations and the last if it is not exactly filled (which is unlikely to happen). All the sectors in between can be loaded directly in memory without any problems.

That is the theory of SPEEDLOAD: loading the first sector in the normal way, loading all the subsequent ones directly in memory, excepted the last, if it is not wholly filled. Obviously, there is no gain in loading a very short file and in preliminary operations (index looking, etc.), but there is a great speed improvment as the file size grows up, as you can view from figure 2. Since SPEEDLOAD trick is in the DOS, it do not requires any modifications on diskette formatting and can read any standard diskette. The modified DOS can be put on the diskette and it will be booted exactly as the standard DOS. Let us go to the practical implementation of SPEEDLOAD.

Inside The File Manager

Since SPEEDLOAD must deal with Basic and binary files, we need to look closely at the loading process. The involved commands are LOAD, BLOAD, RUN and BRUN. First, notice that RUN and BRUN make use respectively of LOAD and BLOAD routines, so we can look only at the latter ones. Let's look at the DOS loading process:

- External level calls file manager for reading file informations: loading address and length for binary files, length only for Basic files.
- External level calls file manager for
reading a block of bytes of specified length.
- External level sets required parameters and, if needed, starts the loaded program.

In all loading operations, file manager make use of the formerly outlined RD1BYT routine. But for loading a block RD1BYT is called through a "read L bytes" (RDLBYT) routine which sets L the required length) and jumps in a general purpose routine (read/write a range of bytes). It is therefore possible to alter this jump and redirect it to a hi-speed block loading routine.

Since the 48 K slave version of DOS 3.3 is universally accepted, I decided to make SPEEDLOAD not relocatable, thus keeping it smaller.

After a careful analysis /using some DOS sources and the Quality Software's Beneath Apple DOS), I determined the input parameters and conditions of RDLBYTE. These are outlined in figure 3. The new routine must respect these conditions in order to maintain compatibility with standard DOS.

The SPEEDLOAD routine

The SPEEDLOAD routine is very little structured, because speed is needed. There are only 2 msec (or little more) available between RWTS calls.

Figure 4 is the listing of SPEEDLOAD routine, (in LISA 2.5 format). Notice the assembly address: the SPEEDLOAD routine take the place of the DOS 3.3 FORMAT routine, that is the routine which physically initializes a new diskette, writing the address marks on it (and empty data too). The FORMAT routine is therefore no more available, but this do not means that it is impossible to INIT a diskette. Since the INIT routine is not modified, it is always possible to re-INIT a previously

Figure 3: RDLBYT input variables (for 48 K slave DOS). All 2'byte variables are in the $\mathrm{L}^{\prime} \mathrm{H}$ order.

Memory locations:

Loc.	Name	Contents and/or meaning
\$B5BB	FMOPC	\$03 ${ }^{5}$ READ (FMNGR opcode)
\$B5BC	FMSUBC	$\$ 02=$ R/W RANGE (FMNGR subcode)
\$B5BD	$\begin{aligned} & \text { FMPAR + } 0 \\ & \text { FMPAR }+1 \end{aligned}$	Record index. In practice, position in file © 1 ; it is $\$ 01$ if Basic file, $\$ 03$ if binary.
\$B5BF	$\begin{aligned} & \text { FMPAR + } 2 \\ & \text { FMPAR + } 3 \end{aligned}$	Byte offset in the record; always 0.
\$B5C1	$\begin{aligned} & \text { FMPAR + } 4 \\ & \text { FMPAR }+5 \end{aligned}$	No. of bytes to read (FILEN)
\$B5C3	$\begin{aligned} & \text { FMPAR + } 6 \\ & \text { FMPAR + } 7 \end{aligned}$	Before jumping to SPEEDLOAD routine, it will contain the loading address (now in Y, X)
\$B5C5	FMPAR + 8	FMNGR return code
\$B5C6	FMPAR + 9	Not used
\$B5C7	$\begin{aligned} \text { FMPAR } & +10 \\ + & 11 \end{aligned}$	Address of FMNGR work area buffer
\$B5C9	$\begin{aligned} & \text { FMPAR }+12 \\ &+13 \end{aligned}$	Address of T/S list buffer, which contains the first T/S list sector
\$B5CB	$\begin{array}{r} \text { FMPAR }+14 \\ +15 \end{array}$	Address of sector buffer, which contains the first data sector
CPU registers:		
A: don't care		
Y, X : loading address (H, L) to be stored in FMPAR $+6,+7$		
Zero page variables available:		
\$42,\$43 only.		

used diskette (if it is not damaged). It is not possible to INIT a new diskette for the first time, because the routine which writes the address marks is no longer within DOS. A direct call to RWTS Format returns with a 'format error' indication.

A diskette must be INITed for the first time using a normal 3.3 DOS. After that, it can be re-INITed with SPEEDLOAD DOS, unless an unwanted exposition to a magnetic field has destroyed the formatting. More information about INIT in the next paragraph (installation).

The routine is 257 ($\$ 101$) bytes long. A more detailed analysis of DOS might have allowed to further reducing the routine size, making use of some DOS subroutines, but I preferred a selfcontained routine. The only external call is for RWTS. You might be surprised to see a single zero page pointer (PTR in the listing) used alternately for two purposes, but I chose to use only locations used by the standard file manager routine, thus insuring total compatibility in any case.

The DCM directive instructs the
assembler to save the produced object code under the name SPL.M.

Installing SPEEDLOAD

Once you have assembled the SPEEDLOAD routine, you must build a SPEEDLOAD DOS, following this procedure:

- Boot a standard 3.3 DOS.
- Put in a new (blank) diskette.
- INIT the blank diskette.
- Insert the diskette with SPL.M
- BLOAD SPL.M, A\$BEAF
- Remove the diskette with SPL.M
- CALL-151 (go to monitor)
- A477: 4C BA BE (link SPL routine)
- AE93: EA EA EA (unlink Format routine)
- CTRL-C (return to Basic)
- Put in again the blank diskette.
- INIT the blank diskette again.

You now have a diskette with SPEEDLOAD DOS on it. Transferring SPEEDLOAD DOS to another diskette can be achieved in two ways:
1.) INIT a new diskette with standard

DOS, then boot SPEEDLOAD DOS and re-INIT the diskette.
2.) Transfer tracks 0-2 from SPEEDLOAD diskette to normal diskette, using some copy program.

The second way allows you to install SPEEDLOAD without erasing the data on the diskette, if you have a track copy program.

If you want to copy a SPEEDLOAD diskette, you can do it with COPYA, but the destination diskette must have been previously INITed with normal DOS, or you will get an I/O ERROR message.

Conclusions

Although there are many speededup DOS available on the market, SPEEDLOAD DOS is the only one, for that I know, which is fully compatible with normal DOS in inner addresses, POKEs, variable usage and so on. SPEEDLOAD works only in loading process, and that is its major limitation, but that is a constraint if you want to keep compatibility with DOS 3.3 fand, beside that, I do not wanted to rewrite all the DOS). However, if you have a big program, or you made use of chaining or machine-language routines, SPEEDLOAD can save you lots of time, in program development and usage.

I tested SPEEDLOAD with over 200 programs and I do not found any incompatibility, even with programs which make extensive use of the file manager, as FID or Microsoft's TASC compiler. I confess that I removed the protection system from many of my game diskettes, only for installing SPEEDLOAD and avoiding frustrating delays. I hope we do not have to see again the hateful "please wait while loading...", now that SPEEDLOAD is available.

Biography

After working five years in designing specialized circuits for FM broadcasting, I founded a little firm which is now growing in the European industrial micro-board market. Since January 1983 I work as free-lance programmer and writer (mainly for Jackson publishing group, based in Milan). My first interest in programming are high level multiplayer games and didactical applications. I am responsible for small computers in ABRS [a research association] and ASTROFISMA \{a didactical one for young people). I work with an Apple II, two drives and silentype.

Apple Reviews

Product Name: Printmate 150G Printer
Equip. req'd: Serial, Parallel or IEEE interface Price: ?
Manufacturer: Micro Periphals, Inc. 4426 Century Drive Salt Lake City, UT 84107

Description: A high quality dot-matrix printer with bidirectional printing, true descenders and one-pass underlining capability, the 150G prints 100 CPS, 132 characters per line and has a 1 K (expandable to 8 K) buffer. While printing normally with a 5×9 dot matrix, a serif font is included for letter quality type in a 11×9 matrix. Dot addressable graphics are supported, and an Ap-pak is available for Apple owners with full software support for screen dumps including different sizes, alignment and printing two pictures at once. Special fonts may be down loaded into RAM or stored in ROM. An optional external keypad is available for setting printer options and is backed up with a battery for remembering the settings.

Pluses: A very fast, very high quality printer which makes the imported models pale in comparison. If you want a better quality printer at a comensurate price, this is the printer I recommend. I have used it for all my printing for 4 months and have not had a single problem.

Minuses: None.
Documentation: An $80+$ page technical manual and a $50+$ page Ap-pak reference manual are included. They are terse, well written manuals. If you like chattiness, buy an import.

Skill level required: No prior knowledge necessary.
Reviewer: Phil Daley

Product Name: Money Tool
Equip. req'd: Apple II + or Π e, disk drive, printer
Price:
Manufacturer: Howard W. Sams \& Co., Inc.
4300 W. 62nd St.
Indianapolis, IN 46268
Description: This product is an excellent checkbook/ budgeting program. It is set up to automatically categorize expenses and apply them against deposits. Additionally, features are provided to accommodate payroll deduction storage for end-of-year tax accounting.

Pluses: The program is incredibly fast for what it has to do. Categorized summations are available for any desired time period. Hard copy is neatly structured and easily interpreted.

Minuses: The program is overpriced. I've seen similar home finance utilities for half as much. Functionally, the only feature I found offensive was the inability to display on the screen all the reports that could be printed.

Documentation: The documentation is entirely adequate. The tutorial is written clearly and is easily followed. Doing so, one can learn everything in about two sittings.

Skill level required: A new Apple owner would have no problem using the program.

Reviewer: Chris Williams

Product Name:	Apple Record Manager
Equip. req'd:	Apple II or II + with one disk drive and 48 K
Price:	$\$ 40.00$
Manufacturer:	Connecticut Info Systems
	218 Huntington Road
	Bridgeport, CT 06608

Description: Creates and saves text files, which you can then edit, append, rename, or delete. This Menu-driven program allows you to set up sequential data files of variable length. You name the files and fields and can quickly view/edit data prior to printing or saving.

Pluses: One-keystroke commands make operation smooth and simple. A quantity of utilities perform all needed functions from the menu.

Minuses: Error-handling is only marginal and might trip up beginners. The screen often becomes cluttered as Record Manager is a stripped-down package and skimps on niceties, such as screen formatting.

Documentation: No written instructions are provided, but upon booting the disk, on-screen instructions are displayed, and they are satisfactory for acquainting the user with information needed to operate the program.

Skill level required: Some knowledge of text files is useful but not mandatory. After some stumbling around, a beginner will get the hang of things.

Reviewer: Mike Cherry

Product Name:	Micro Illustrator
Equip. req'd:	Apple II w/48K and Applesoft Recommended: Koala Touch Tablet
Price:	$\$ 129.95$ with Tablet

(continued)

Hewlett Packard
Write or call for prices.

SPECIALS on INTREGATED CIRCUITS

PROM OUEEN for VIC
Appia Emulafor for Commodore 64
STAT Stalistics Package for C64
Solld Oak 2 Leval Stand for C64 or VIC C64NIC Switch (networking)
GACKUP V1.0 tape copler lor C64 or ViC CARDBOARD/6 Motherboard - VIC CARDBOARD/5 Motherboard - C64 CARD PRINT G Printer Int with Graphics CARD PRINT B Printer Interface-C64/VIC CARDBOARD/3s Motherboard - VIC CARDCO C64NIC Calculator Keypad CARDRAM/16 RAM Expansion - VIC
Completa CABDCO Lina in stock CIE and VIE IEEE Interfaces in stock MSD Superlinve lor C64 or IEEE
MAE Assembler for C64
Kosla Touch Tahlol-C64 or VIC 79
CBC 4/12 12-bit A to D Board + Soltware 199
Multiplan for C64
79

Dust Cover for C64 of VIC
 APPLE—FRANKLI |TEMS

FAANKLIN-complete line in slock
QUENTIN Drves for Apple/Franklin

Swapper Stoppar

automatic switch between paddles and joystick KRAFT Appla Joystick
Kraft Apple Paddie Pair
Koala Touch Tahial-Apple/Franklin
SPINHAKER Saftware in stock
Brodertund Software in stock
16K RAM Card for Apple
Mulliplan-Microsolt 185

Solid Oak 2 Leval Sland lor Apple

Serial Card for Apole
MCP RAM/80 columa card for lle (AP/TXT] 139
Z80 Softcard and CP/M (Microsoft)
RANA Elite I with Controiler
Parallel Printer Intertace/Cable
Microtak and MCP Intarfaces in stock
Grappler + Interface
Kratt Products for Apple in stock
DC Hayes Micromodem II
PFS: Fila
95

PFS: Report

Videx 80 Column Card
Applo Blue Boak

Gcommodore

See us for Personah, Businass, and Educational requirements. Educatienal Discounts available.

PETSCAN I \$245 base price

Allows you to connect up to 30 CBM/PET Computers to shared disk drives and printers. Completely transparent to the user. Perfect for schools or multiple word processing configurations. Base configuration supports 2 computers. Addi tional computer hookups $\$ 100$ each.

COMPACK/STCP

Intellinent Terminal Package for PET. CBM, C64
Includes ACIA Hardware / STCP Software
SCHEEN MAKER 80 Column Adapter for C64 145
Provides big screen capability for business applications.

GENESIS Computer Corp

VIController (for C64 as well 50
combine with BSR modules for home or business control COMSENSE Ramete Sansian Adapter for C64 orVIC 35 COM VOICE Syalhosizer for C64 or YIC
includes software for text to speech, pitch, etc
COM CLOCK feal Then Clack with hatiery backip 45
VIC 20 Preducts and Software It stack

Therl EMI Software	UMI Saftware	
ABACUS Saftware	HES Software	
16K RAM for VIC	64	Vanilla Pilot

YICTORY Software for YIC and C64
Metamorphosis 16 Creator's Revenge
Labyrinth of Creator 16 Galactic Conquest
Kongo Kong 16 Annihilator
Chomper Man 16 Grave Robbers Bounty Hunter 16 Adventure Pack I or II 16
PAPER CLIP Ward Precessor 99
OAACLE Oata Base from Batieries Incuded
Super BusCart from Batlories Includad
Commodore 64 Programmers Reference Guide 109

MicroChoss for C64-8 levols of play

DISK SPECIALS

Scotch (3M) 5" ss/dd $10 / 2.20 \quad 50 / 2.00 \quad 100 / 1.95$
Scotch (3M) 5"ds/dd $\quad 10 / 3.05$ 50/2.80 100/2.75
Scotch (3M) $8^{\prime \prime}$ ss/sd
Scotch (3M) 8" ss/dd
10/2.30 50/2.10 100/2.06
We stock VERBATIM DISKS

Write for Dealer and OEM prices

$\begin{array}{lllll}\text { Sentinal } 5^{\prime \prime} \text { ss/dd } & 10 / 1.90 & 50 / 1.85 & 100 / 1.80 \\ \text { Sentinal } 5^{\prime \prime} & \text { ds/dd } & 10 / 2.55 & 50 / 250 & 100 / 2.45\end{array}$ Sentinal $5^{\prime \prime}$ ds/dd $\quad 10 / 2.55 \quad 50 / 2.50 \quad 100 / 2.45$

We stock Dysan disks

Wabash 5" ss/sd $\quad 10 / 1.60$ 50/1.55 $100 / 1.45$ Wabash $5^{\prime \prime}$ ss/dd $\quad 10 / 1.90 \quad 50 / 1.85 \quad 100 / 1.75$ $\begin{array}{llllll}\text { Wabash } 8^{\prime \prime} \text { ss/sd } & 10 / 2.00 & 50 / 1.95 & 100 / 1.85\end{array}$

We stock MAXELL DISKS

Write for dealer and OEM prices.

Disk Storage Pages 10 for $\$ 5$ Hub Rings 50 for $\$ 6$ Oisk Library Cases $8^{\prime \prime \prime}-3.00 \quad 5 \prime-2.25$ Head Cleaning Kits 12
AMARAY Disk Storage Systems in stock
Innovative Concepts FLIP 'N' FILES in stock

CASSETTE TAPES—AGFA PE-611 PREMIUM			
C-10	$10 / .61$	$50 / .58$	$100 / .50$
$\mathrm{C}-30$	$10 / .85$	$50 / .82$	$100 / .70$

DATASHIELD BACKUP POWER SOURCE $\$ 265$
Battery back up Uninternuptible Power Supply with surge and noise filtering. The answer to your power problems.

Mutitilan-IBM or Appie
Quadboard for IBM available
KOALA Touch Tablets--Apple, Atari, IBM, CBM
Peachiext 5000 Sofiware Package
PFS Software for IBM and Apple in stock
VOTRAX Personal Speech System
280
BMC 9191 Color Monitor 229
BMC 12A 12" Green Monitor
Brether H月-75 Daisy What Prititer
Dyaza (Brather DX-15 Daisy Wheel Prater
Itoh Prowriter Parallel Printer
Pamasoalc 1090 Priater with Correspondence Made
Daisywriter 2000 with 48 K buffer
Gamial 10X
EPSOM. Okidata Star Micrenies printers in stock
USI CompuMOD 4 R F Modulator
Wo Stock AMDEK Monitors
Amdek DXY-100 Plotter
A P Products
590
COMPUTER COVERUPS IN STOCK
BROOKS 6 Outtet Surfo Suppressor/Nolse FHler
Surge Suppressor-6 outlet
Electrohome 1302-2 13" Hi-res RGB Monitor
Panasonic $12^{\prime \prime}$ Monitor (20 MHz) with audio
Syartak SYM-I Mierocamputer
ALL BODK and SDFTWARE PRICES DISCDUNTED
USI Video Monitors-Green or AMBER 20 MHz hFres. Deaier and OEM Inqualies lavited

ZVM-122A
109 ZVM-123G
95
ZVM-131 $300 \quad$ ZVM-135
HERO 1 Robot (factory assembled)
Z29 Terminal (DEC and ADM compatible)
$2 \pi-10$ Intel. Terminal with Serial Port
Z100 16-bit/8-bit Systems
FlexFile for PET/CBM/ C64 \$ 50
Database, Report Writer with calculations, Mailing Lists.
FORTH For PET/C64 full FIG moded-Cargill/Riley \$50 Melucsanpilor for FORTH for independent object code 30

KMMM PASCAL IY. 1 Ior PET/CBM/CG4

EAhL for PET/CBM Disk-based ASSEMBLER
Super Graphics - BASIC lamere Extemshans
$\mathbf{4 5}$

Fast machine language graphics routines for PET/CBM
RAM/ROM for PET/CBM
$4 \mathrm{~K} \$ 75 \quad 8 \mathrm{~K} \$ 90$
Koala Technologies
253 Martens Ave.
Mt. View, CA 94040
Steven Dompier

Author: Steven Dompier
Description: A graphics illustrating program with various brush sets, colors, and drawing modes. Points, lines, rectangles and circles can be plotted on the high resolution screen with different colors. Filling and erasing is accomplished easily. Creations can be saved to and loaded from disk. The program is a combination of BASIC and machine-language on an unprotected disk.

Pluses: The program is menu driven and much easier to use than most graphics programs. It includes many sophisticated features such as magnification and fill. It is very easy to create complicated and professional looking drawings.

Minuses: The Koala Tablet is recommended for its smoothness and preciseness. It is difficult to draw a smooth line with a joystick.

Documentation: A very complete, clear and well written booklet is included with the program.

Skill level required: No prior skill needed. Good for ages 5 and up.

Reviewer: Phil Daley

Product Name:	Bugbyter
Equip. req'd:	Apple II
Price:	$\$ 47.50$
Manufacturer:	Computer-Advanced Ideas
	1442 A Walnut Street, Suite 341 Berkeley, CA 94709 Author:
	Tom Cohn, and Pete Row

Description: Bugbyter is an interactive M/L debugging tool which is relocatable to any unused location compatable with your program including into a language card. It has a screen-oriented display which has complete information on the status of all the 6502's registers and stack. It includes capabilities to turn off the display to avoid conflict with the program. and to set an area of memory (such as DOS or the monitor) to be executed at real-time known code. You can set breakpoints-hard or soft-and triggers to count the break points. It assembles and disassembles code similar to and uses instructions like the monitor. The accompanying 40 page documentation is excellent.

Pluses: It is very easy to use and clearly shows everything you need for debugging. No M/L programmer who writes large programs should be without it.

Minuses: None.
Skill level required: Beginning to intermediate M / L programmer.
Reviewer: Phil Daley
MICRO

\# 1 SELLER AT A.P.P.L.E.*

 Powerful New Software Enhancement System For Apple II, //e. Triples Programming Speed!APB-102 Ulitra-Rom Board/Editor Includes:

- Advanced G.P.LE.* (Global Program Line Editor) in Firmware -With Insert, Delete, Find, Tab, Zap, Pack, Restore, End, Etc.
- Firmware Management Program (FMP) Overlays 32K of ROM in 2K Space
-Allows jumps and calls between banks-searches for utilities by name -Recognizes new ROMs and utilities automatically
- APU-1 with over 25 Language Extensions \& Ampersand Utilities -If/Then/Else, Print Using, Ultra Fast Search, Damaged Program Recovery
- Always in the Machine-No Searching for a Disk
- Never in the way-No Program RAM used
-Connect with 4 Keystrokes / Disconnect with 2!
"If you program \& haven't used a line editor, get one night away" -MCRO MAGAZINE
"The most powerful program development tool I have" -ROBERT WISON, PROGRAMMER
"Excellent Product, flawless" -PHIIP DALEY, PROGRAMMER
"Great product, exceeds my expectations" -DR STEVE COOK
"An elegant solution... well thought out... worth it" -SOFTALK REVIEW, SEPT. 1983
"The best thing for the Apple since the disk" -EDWARD DECKER. PHARMACIST/PROGRAMMER

Hollywood Hardware
(213) 989-1204

6842 VALJEAN AVENUE, VAN NUYS, CA 91406

USE OUR 60 DAY UNCONDIIONAL MONEY BACK TRIAL. IF YOU CAN PART WITH IT-WE'LL BUY II BACK! ASK ABOUT DEALER/USER GROUP DISCOUNTS!

SJB DISTRIBUTORS. ONE STOP SHOPPING FOR COMMODORE SYSTEMS.

©commodore

NEW COMMODORE PRODUCTS
Executive 64 \$ Call
CBM B128-80 825

B Series Software Call
WORD PROCESSING 64 E
NEW - Mirage 80 col. \$ 95
WordPro 3^{+}/Spellright 79
WordPro 3^{+}(WP). 59
Spellright (Dictionory) 39
Paper Clip
Easy Script (D)
Easy Spell (D)
19
SPECIAL - Busiwriter (C,D) 39
Quick Brown Fox (R)
SPREADSHEETS 64 E
Calc Result - Advonced (R,D) \$ 120
Busicalc II - More Power! (R,D) 95
Multiplan 64 (D).
79
Calc Result - Easy (R). 70
Practicalc 64 (D)
45
Busicalc I - SPECIAL! (C,D) 39
DATA BASES 64 E
Mirage Data Base (D). \$ 95
M'File (merges with WordPro) (D). . . 89
Micro Spec Data Manager (D) 60
Codewriter (develops programs)(D). . . 95
PRODUCTS OF THE MONTH
TCS 64/80 - NEW! (D). \$ 139
(WP/Data Base/Spread)
Koala Pad - NEW!. .89

Delta 10 (160 cps) - NEW! 549

UTILITIES 64 E
Vic Tree (4.0 Basic) (R) \$ 75
64 Super Expander (R). 25
Simon's Basic (R).
25
Cardco Printer Utility (C) 15
MS-Backup (Back Up Data!) (D) . . . 15
ACCOUNTING 64 -
Home Accountant (Continental) $\$ 75$
Tax Advantage (merge w/home
accountant) - NEW!45

General Ledger, A/R, A/P, P/R, Inv.
(Info Design's Original) (D) ea. 79
Numeric Keypad (Hardware) 65
Numeric Keypad (Cardco)
TELECOMPUTING 64 E
Vic 1650 (Auto Ans/Dial) Modem . . \$ 95
Vic 1600 Modem
59
Hes Modem (Downloading Software) 65
Super Term (Download/80-128 Form). 95
Micro Term 64 (Download P/D).
EDUCATION 64 E
Spelling I (Koala) (D) S 29
Geometric (Koala) (D) 20
1.Q. Baseball (D).

25
Bible Baseball (D)
25
Happy Tutor (Typing) (D) 15

LANGUAGES 64 :

Instaspeed Basic Compiler (D) \$ 99
Nevada Cobol (D). 55
Pilot (D) . 45
Logo (D) . 45
Assembler Development (D) 25
64 Forth (R) .
PRINTERS - DOT MATRIX
Epson RX80 (80 cps) \$ 299
MX80 w/FT (80 cps) 399
FX80 (160 cps) $\quad 549$
FK100 (160 cps) $14^{\prime \prime}$ width. 859
Okidata 82A . 429
Okidata 92 . 549
NEC 8023A . 429
Star Delta (160 cps)-NEW!. 549
Star Gemini 10X (120 cDs) 309
Star Gemini 10/15 Call
Transtar 315 (Hi Res., Color) 575
Micro Edge Printer Paper (540 Sheets). . 10
ESSENTIALS
Commodore 64 \$ Call
1541 Disk Drive 249
1525 Printer ($80 \mathrm{col} / \mathrm{DM}$) 225
1530 Datasette 65
1520 Plotter/Printer (4 Color) 169
1526 Printer. Call
1702 Monitor 249

CBM

8032 (80 column Pet). \$ 625
SuperPet (5 languages!). 1049
8050 Dual Drive (1 mg.) 995
8250 Dual Drive (2 mg.) 1295
9060 Hord Disk (5 mg.) 1995
2031, 170K Single Drive 295
64K Upgrade for 8032 259
SuperPet upgrade for 8032 599
4023 Printer ($80 \mathrm{cps}, 80 \mathrm{col}$) 395
8023 Printer (150 cps , graphics). . . . 545
6400 Printer (40 cps, LQ) 1450
LETTER QUALITY PRINTERS
Diablo 620, 25 cps. \$ 949
Transtar 130, 16 cps - 132 col...... 769
Transtar 120, 14 cps - 80 col 500
MONITORS
Panasonic CT 160 (color). \$ 279
Panasonic TR120 (w/spkr,green). ... 155
Sanyo/Amdek -Green, No Audio, 12"... 125
BMC/Sanyo-Green, No Audio, 9" 95
Cable (For Above) AN 15
VIC ACCESSORIES
8K RAM Expand. Cart. \$ 40
16K RAM Expand. Cart. 70
24K RAM Expand. Cart. 105
27K RAM (Expands Vic to full 32K). . . . 119
3 Slot Exponder 30
6 Slot Expander. 70
Joystick (Wico-Red) 25
Joystick Blaster (ADR Rapid-Fire). . . . 10

INTERFACES \& ACCESSORIES

Data 20 80-Col. Exp. \$ 159

Mr. Computer 80-Col. Exp. 60
5-Slot Exp. (64) 65

Vic Switch (connect 864 's or Vic's
to $\mathrm{DD} /$ Printer) 145
Cobles 3M, 6M, 12M for above. Coll
Verax (Box of 10) 51/4 Diskettes. 26
Connection(Pet/64 graphics,2K Buffer) 99
Cardco Print + Graphics 85
Cardco Cardprint 70
MW 302 Parollel. 65
PET/IEEE Coble (1m). 33
IEEE/IEEE Cable (Im) 49
Interpod (Intelligent IEEE,
RS232, serial)
149
ADA 1800 (IEEE/Parallel). 129
ADA 1450 (IEEE/RS232 (M/F))..... 129

VISA/MASTERCARD MONEY ORDERS BANK CHECK

C.0.D.'s Accepted. (Add \$5)

In stock items shipped within 48 hours. F.O.B. Dallas, Texas (Texas Res., Add 5\% Tax). Products shipped with manufacturer's warranty.
Prices subject to change without notice.
\$50 Minimum Order.
"Defective units must have retum
authorization number and include
copy of invoice.

SJB DISTRIBUTORS INC.
10520 Plano Road, Suite 206 Dallas, Texas 75238

TO ORDER
CALL TOLL FREE 800-527-4893 800-422-1048
(Within Texas)

CATALOG
Send Postcard with Name \& Address to speed processing.

/AICRO

Interface Clinic

by Ralph Tenney

Dave English, of Orange, California wrote with the following question: "I have never seen a general treatment of direct interfacing between micro CPUs, so that one runs foreground and one runs background. This does not seem to be a difficult topic, as there are a variety of plugin modules are sold for various computers and other microcomputers with dual CPUs, such as the SuperPET.'

Dave then goes on to mention one of his own experiments: "I currently have a Timex 1000 and a PET 2001 sharing the screen of the PET. It's not true time sharing; one or the other has complete control of the screen at any time."

We can address part of Dave's question by examining the factors involved in getting two (or more) CPUs to cooperate in various ways. The first thing is to define the extent of the interaction and decide what type of interface is needed. We also need to understand that not all of the plugin boards sold for computers such as Apple are multi-processor setups, even though they may seem to be. Many of the popular "appliance" computers have a special input line in their expansion port to disable the processor so that an external plugin can take command of the memory. So, as long as that plugin is in place, only the processor on the plugin is active. I think it is fair to say that this setup doesn't really fit Dave's topic.

There are two basic types of multiCPU interfaces - one is where the various CPUs communicate directly on a shared bus, and, strange as it may seem, this can be done even with dissimilar processors. It is perhaps more convenient to do both the programming and the interface design if the shared-bus concept uses identical processors, but mutual operation on a shared bus is possible with different processors. The second mode is one where the necessary communication is carried on an auxiliary bus such as an RS-232 link or a high speed synchronous or asyuchronous line. This type of communication can also be performed by similar processors (such as two 6502s)
or different processors [such as 6809 and Z-80).

During this discussion we will ignore those microprocessor families which have coprocessors available; a coprocessor is a specially programmed
subset of the main processor, dedicated to a special task such as number crunching or I/O. These are a special case, and the interaction has been carefully planned by the manufacturer. We will also not deal with the concept of multi-

Super Fan II's Zener Ray ${ }^{\text {TM }}$ Transient Voltage Suppressor and Power Filter squelches spikes up to 6000 amps - even those caused by lightning - while responding up to 100 times faster than Apple II's

built-in suppressor.
In addition, Super Fan II cools your Apple, removing heat buildup at a remarkable 17 cubic feet of air per minute. Yet it's the quietest fan of its kind on the market.
Super Fan II also positions a lighted on/off computer switch and two accessory plugs at your fingertips. It's warranted for two years and simply clips to your Apple II, Ile or monitor stand. See your R.H. Electronics dealer today about Super Fan II*, or contact us at 566 Irelan Street, Buellton, CA 93427, (805) 688-2047.

RHELECTRONICS, INC.

 U.S. Patent H0268283 \# 43832866

France, catl B.IP 1-255-4463 Ausiaha, call magineerng (02)212-141)

Blow up

Gee whiz. Look what you've done. Your big shiny Apple, destroyed.

And you thought you were just having a little fun?

Introducing our new home computer game
Cavern Creatures."' Where one false move, one mistaken twitch of the Joystick can do terrible things to an Apple. Like shut parts down.
Who knows which ones? Making it act awful funny and then ...KA-BOOM!

The game's finished. And maybe, so is your Apple. Oh, but don't worry.

Cavern Creatures is just a game. Full of action. Fun. Suspense. Just like our other games.
Whether they're blowing up your Apple.
Or totally blowing your mind.
How Much More Can One Joystick Jockey Take?
We've exceeded our past reputation for bringing you some of the most super snazzy, ultra-intense, graphically involving games around.
We've gone totally out of our minds with every game from shoot 'em up, blast 'em out of the sky strategies to mind game graphics guaranteed to provoke a mental meltdown.

Are you ready?

- 1

Cavern Creatures'"
You can squirm. Beg. Plead. And moan. Nothing will save you, or your Apple, from being blown sky-high by this game. Don't worry. The effect's not permanent. Your Apple will recover. But will you?

your Apple:

Space Ark ${ }^{\text {™ }}$
Skin-hunters, poachers and mechanicals-enemy robots who aren't exactly the warm and friendly types-await you. Obliterate the bad guys. Save the good guys. You might survive this.
Ardy The Aardvark ${ }^{\text {m }}$
Here's a tongue that's as long and skilled as you are. Think you can lick stinging ants and tarantulas? Use Ardy's tongue as you make it through this maze!
Roundabout ${ }^{\text {m }}$
Sharpens your target skills with 24 , count 'em, 24 different series of targets. How's your hand to eye coordination, pal?

Super Bunny ${ }^{\text {™ }}$

No, Super Bunny is not referring to all those Playboys stashed under the bed. It's a strategy/action game that just might turn your brains into carrot puree. Cover your burrow!

Conquering Worlds ${ }^{\text {m }}$

So you fancy yourself a diehard strategist? Try conquering this. Maybe you'll rule the universe if mom will let you off restriction.

Bilestoad ${ }^{\text {mw }}$

Avoid violence, but be prepared.
Incredible graphics make this rated R! But if you're a wimp, pass this game up. It's not for babies.

And if you like to push people around, lay off your little brother and take on these aliens instead.
Save the Domed City from doomsville.
ple processors for the purpose of reliability (redundant design). Instead, I will give some points to consider and hints on how to proceed with designing a system of multiple processors which share the system resources but each "does its own thing'. One example is a commercially available dedicated word processor. In this particular system, a 6800 handles all the word processing while a 6502 runs the keyboard, screen display and the disk drives. This particular machine can receive serial data at 1200 baud, storing the incoming data on the disk and displaying it at the same time. The major system requirement for multi-processing is to partition all the jobs, defining very carefully the responsibility of each processor. In fact, it is like designing two separate systems and then designing an interface between the systems! Once all the system jobs have been passed out, you need to define the interface and decide how the information interchange will be handled.

Some microprocessors have been designed specifically for multiprocessing, such as the 6801 and 6809. Figure 1 shows just the interconnection of two 6801 uPs . The eight lines of Port P3 and the two SC lines combine to make a parallel link which transfers one byte at a time between the two devices. The SC lines form a handshake setup which informs the "slave" processor that data is ready. Note that "slave" and "master" status is defined by which is programmed to send and which is programmed to receive. The 6809 has a special pin called DMA/BREQ which allows other processors or special purpose hardware to request control of the data and address bus lines for fast data transfer or other purposes. The Radio Shack Color Computer uses the 6809E, which does not allow normal DMA or other types of bus access, since this would disturb the special relationship between the $u P$ and the SAM (Synchronous Address Multiplier).

Another way to interface between processors is to define special areas of memory which can contain anything from a single bit or byte to whole pages of data. One processor must leave the data for the other, and set a flag which indicates the data is ready. The second processor will then pick up the data and cancel the flag. In practice, the memory bus must be segmented so that each processor has enough "private" memory for its own tasks, and the data buffer must be in address space which each processor can use. At the same

HASTER PROCESSOR
SLAUE PRDCESERR

Figure 1: Some microprocessors, such as the Motorola 6802 shown here, have built-in provisions for communication between processors.

Figure 2: Two processors sharing some common memory area can use interlocked latches to prevent bus conflict (see text).

Figure 3: A Digital-to-Analog converter cannot make accurate measurements without adequate resolution (see text).
time, there needs to be either interlock circuitry which prevents both processors from trying to access the area simultaneously, or the programming for both processors must enforce a similar protocol. This type of design almost always involves a dedicated pair of latches, and each latch will have a unique address controlled by one processor. This is illustrated in Figure 2; when $u P \# 1$ is using the data buffer, it sets latch L 1 to the "off" state $(\mathrm{Q}=0$) by pulsing the CLEAR input. Ll's Q output holds L2 in PRESET (Q high) as long as uP\#l is accessing the buffer. At the same time, Ll's / Q output is high, serving as a BUSY flag for $u P \# 2$. When $\mathrm{uP} \# 1$ releases the buffer, it pulses the clock line of L1, which sets L1 to the "on'" state, clears the busy flag and releases L2. Similar action by uP\#2 controls L2 and warns uP\#1 that the buffer is busy. It may also be important that the two processors have synchronized clock inputs.

If two separate computers involved in a project must work together, one computer can be designated as the master, and it will send commands to the other computer over their link, which can be a high speed RS-232 line.

The master must be programmed to pass the required commands to the slave computer, besides keeping its own business straight. It is likely that the slave will be assigned some kind of monitoring tasks, and the incoming commands will trigger interrupts on the slave. Then, depending upon the type of command, the slave may make a different measurement or report the previously collected data. Whatever the assigned tasks, part of the programming for both computers will involve specially coded commands to define precisely the nature of the task to be performed.

That's enough on computer communications for now! I have promised to introduce some of the real-world hardware such as analog to digital (A/D) and digital to analog (D/A) converters. Very few processes and parameters we might be interested in are digital. We normally want to know how heavy, how strong, how loud, etc. something is. Natural processes come in all sizes, shapes and colors, and a precise measurement will usually involve values which do not change in discrete digital steps.

Natural processes vary widely be-

RIM + POWER tom CDMPUTECH

Ail prices Postpaid (Continental U.S. otherwise \$2 credit)

Check the outstanding documentation supplied with AIM65

Top quality power supply designed to Rockwell's specs for fully populated AIM 65 - includes overvoltage protection, transient suppression, metal case and power cable:
PSSBC-A (5V 2A Reg; 24V .5A Avg, 2.5A Peak, Unreg) ...\$64.95 Same but an extra AMP at 5 volts to drive your extra boards: PSSBC-3 (5V 3A Reg; 24V .5A Avg, 2.5A Peak, unreg) ...\$74.95
The professional's choice in microcomputers:
AIM65/1K RAM $\$ 429.95$ BASIC (2 ROMS) $\$ 59.95$
AIM65/4K RAM \$464.95 ASSEMBLER (1 ROM) . . \$32.95
FORTH (2 ROMS)\$59.95.

SAVE EVEN MORE ON COMBINATIONS

AIM65/1K + PSSBC-A . \$479.95 AIM65/4K + PSSBC-3 . \$524.95 We gladly quote on all AIM65/40 and RM65 items as well. ORDERS: (714) 369-1084
P.O. Box 20054 - Riverside, CA 92516

California residents add 6% sales tax
tween two limits in such a way that a digital quantity will not be exactly correct as shown in Figure 4. This diagram assumes an A / D converter with a full scale input of 16 volts and having a resolution of four bits $\{2 * * 4$, or one part in 16). In other words, each step of the converter represents a one volt change. If we assume the voltage to be measured is 9.5 volts, we find that step 1001 (binary) is too low and step 1010 is too high. Note that even if the 4 bit converter is 100% accurate, the best answer it can give for this measurement is incorrect by $.5 / 9$ or 5.5%. If we can increase the converter's resolution to 8 bits ($2 * * 8$, or 1 part in 256), 9.5 volts happens to be exactly 152 steps out of the 256 possible; the new converter has steps of 62.5 millivolts. At present, about the best resolution economically possible with an A/D converter is 16 bits (one part in 65536), or 244 microvolts if the full scale range were 16 volts as in our examples. Actually, typical A / D converter ranges are $0-5$ volts, $0-10$ volts, or -5 to +5 volts. If we don't have another reader question next month, we will get into types of A/D converters and do some experiments.

You may contact Mr. Tenny at P.O. Box 545, Richardson, TX 75080.

FOR COMPUTER SCIENCE

THIS IS VIC-20 BASIC

ROBERT F. SUTHERLAND and RICHARD M. GILMAN
Emphasizing good programming practices, the authors show how to take advantage of the VIC-20's special capabilities such as creation of shapes and pictures in color, and production of music and sound effects.
1984 Paperback 420 pp.(approx.) ISBN: 0-02-418380-6 \$16.95

AN INTRODUCTION TO STRUCTURED BASIC FOR THE CROMEMCO C-10

WAYNE T. WATSON

The only book available in its area, this book assumes no prior programming experience and stresses interaction with the microcomputer. The first ten chapters provide a foundation to the most commonly used concepts in BASIC, and the last four chapters offer more advanced material on files and programming structures.
1984 Paperback 276 pp. (approx.) ISBN: 0-02-424580-1 \$16.95

BASIC-80 AND CP/M

JACK JAY PURDUM
The key features of BASIC-80 ${ }^{\circ}$ are related to the most popular microprocessor operating system, CP/M.' ${ }^{\text {™ }}$ Coverage includes sequential, random, and skip-sequential file structures and many useful subroutines for applied programs (binary searches; Shell and Bubble sort; range checks; direct cursor control for many popular CRT's; and error messages under direct cursor control). 1984 Paperback 220 pp . ISBN: 0-02-397020-0 \$16.95

IBM-PC: 8088 MACRO ASSEMBLER PROGRAMMING

DAN ROLLINS, Independent Consultant Intended specifically for the increasingly popular IBM-PC, this book incorporates up-to-date sections on IBM-PC color graphics and includes many sample programs.
March, 1984 Paperback 300 pp. ISBN: 0-02-403210-7 $\$ 13.95$-tentative

Prices subject to change without notice.

AVAILABLE AT YOUR LOCAL

 BOOKSTOREFOR MORE INFORMATION CALL TOLL-FREE 1-800-223-3215. OR WRITE:

Advertiser Index

A B Computers 88
Amplify 36
Atari Program Exchange 6
CompuTech 94
Computer Mail Order 76,77
Datamost, Inc 92,93
Eastern House Software 13
Hollywood Hardware 89
Incomm 42
Interesting Software 38
Kiwi Software 73
Leading Edge Back Cover
MacMillan Publishing Co 96
Micro 75, 80
Micro Spec 9
Micro Ware 45
Midwest Micro Inc 22
Percom Data 3
Performance Micro Products 59
Perry Peripherals 72
Protecto Enterprizes 30, 31, 32
RH Electronics, Inc 91
Richvale Telecommunications Inside Front
S G C 86
S J B Distributors 90
Safeware 56
Scientific Software 73
Skyles Electric Works 19
Spectrum Projects 70
Star Micronics Inside Back Cover
Strom Systems Inc 2
Titan Technogies, Inc 20
Totl Software 58
Victory Software 21
Winders \& Geist, Inc 1

National Advertising Representatives

Home Office:
Cindy Kocher, Advertising Manager
P.O. Box 6502

Chelmsford, MA 01824 (617) 256-3649
Mid-West Territory:
Thomas Knorr \& Associates
Thomas H. Knorr, Jr.
333 N. Michigan Avenue, Suite 401
Chicago, Illinois 60601 (312) 726-2633
serving: Ohio, Oklahoma, Arkansas, Texas, North Dakota, South Dakòta, Nebraska, Kansas, Missouri, Indiana, Illinois, lowa, Michigan, Wisconsin, and Minnesota.

West Coast:
The R.W. Walker Co., Inc.

Gordon Carnie

2716 Ocean Park Boulevard, Suite 1010, Santa Monica, California 90405
(213) 450-9001
serving: Washington, Oregon, Idaho, Montana, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada, California, Alaska, and Hawaii (a/so British Columbia and Alberta, Canada)

Thenew pacesetter in professional printers. The economical dual-speed Radix15 multififuction printer:

With a fast and furious work pace, a highly flexible printer is crucial. That printer is the new Radix-15. Watch it take your work and run with it.

It's dual speed! At 200 cps Radix fires out a superbly refined dot matrix printout. At 50 cps it prints professional near-letter quality. So now you can go from spreadsheets to memos at the flip of a switch or at your computer's command.

It's multi-functional! In either mode Radix15 quickly adapts to your needs. There's serial and parallel interface. Memory storage with a 16 K buffer. Responsive throughput to help you use
time more efficiently Bi-directional performance. Friction and tractor feed. An automatic sheet feeder for letterheads and a short form tear-off for preprinted forms. Plus, the freedom to underline, set vertical and horizontal tabs and print a huge variety of type faces.

It's economicall And not only does Radix give you 2 printers in 1 it also gives youra price performance as outstanding as its working performance.

The professional Radix-15. Using the everchanging beat of business to your advantage. And that's what being a pacesetter is all about!

REMEMBER.

ELEPHANT MEYER FORGETS.

A full line of top-quality floppies, in virtually every $5^{1 / 4 "}$ and $8^{\prime \prime}$ model, for compatibility with virtually every computer on the market. Guaranteed to meet or exceed every industry standard, certified 100% error-free and problem-free, and to maintain its quality for at least 12 million passes (or over a lifetime of heavy-duty use).
Contact Dennison Computer Supplies, Inc., 55 Providence Highway, Nonwood, MA 02062 or call toll-free 1-800-343-8413.

[^0]: Randall Hyde is vice president in charge of advanced research and development at Lazer MicroSystems, Inc., a Southern California software development firm. You may contact Mr. Hyde c/o Lazer MicroSystems, Inc., 1791 Capital, Unit G. Corona, CA 91720.

[^1]: Add $\$ 10.00$ for shipping, handiling and Insurance. Illinols residents | please add 6\% tax. Add $\$ 20.00$ for CANADA, PUERTO RICO, HAWAll | I orders. WEDO NOT EXPORT TO OTHER COUNTRIES.
 | Enclose Cashiers Check, Money Order or Personal Check. Allow 14 |

[^2]: WE DO NOT EXPORT TO OTHER COUNTRIES EXCEPT CANADA
 Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail! Canada orders must be in U.S. dollars. We accept Visa and MasterCard We ship C OD.

[^3]: Add $\$ 10.00$ for shipping, handiling and Insurance. Illinols residents I
 please add 8% tax. Add $\$ 20.00$ for CANADA, PUERTO RICO, HAWAll | orders. WE DO NOT EXPORT TO OTHER COUNTRIES
 | Enclose Cashiers Check, Money Order or Personal Check. Allow 14 | days for delivery, 2 to 7 days for phone orders, 1 day express mail! Canada orders must be in U.S. dollars. Visa - MasterCard . C.O.D.

[^4]: Walter Charlton has his MBA from the University of Nevada, Las Vegas. He teaches computer programming part time and works as a Field Engineer for a major computer manufacturing firm.

